Qwen3Tokenizer
classkeras_hub.models.Qwen3Tokenizer(vocabulary=None, merges=None, **kwargs)
Tokenizer for Qwen3 models.
This tokenizer implements byte-pair encoding (BPE) for Qwen3 models, handling special tokens like BOS (beginning of sequence) and EOS (end of sequence).
Arguments
from_preset
methodQwen3Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset | Parameters | Description |
---|---|---|
qwen3_0.6b_en | 596.05M | 28-layer Qwen3 model with 596M parameters, optimized for efficiency and fast inference on resource-constrained devices. |
qwen3_1.7b_en | 1.72B | 28-layer Qwen3 model with 1.72B parameters, offering a good balance between performance and resource usage. |
qwen3_4b_en | 4.02B | 36-layer Qwen3 model with 4.02B parameters, offering improved reasoning capabilities and better performance than smaller variants. |
qwen3_8b_en | 8.19B | 36-layer Qwen3 model with 8.19B parameters, featuring enhanced reasoning, coding, and instruction-following capabilities. |
qwen3_14b_en | 14.77B | 40-layer Qwen3 model with 14.77B parameters, featuring advanced reasoning, coding, and multilingual capabilities. |
qwen3_32b_en | 32.76B | 64-layer Qwen3 model with 32.76B parameters, featuring state-of-the-art performance across reasoning, coding, and general language tasks. |