QwenTokenizer classkeras_hub.tokenizers.QwenTokenizer(vocabulary=None, merges=None, **kwargs)
Tokenizer for Qwen models.
This tokenizer implements byte-pair encoding (BPE) for Qwen models, handling special tokens like BOS (beginning of sequence) and EOS (end of sequence).
Arguments
from_preset methodQwenTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| qwen2.5_0.5b_en | 494.03M | 24-layer Qwen model with 0.5 billion parameters. |
| qwen2.5_instruct_0.5b_en | 494.03M | Instruction fine-tuned 24-layer Qwen model with 0.5 billion parameters. |
| qwen2.5_3b_en | 3.09B | 36-layer Qwen model with 3.1 billion parameters. |
| qwen2.5_7b_en | 6.99B | 48-layer Qwen model with 7 billion parameters. |
| qwen2.5_instruct_32b_en | 32.76B | Instruction fine-tuned 64-layer Qwen model with 32 billion parameters. |
| qwen2.5_instruct_72b_en | 72.71B | Instruction fine-tuned 80-layer Qwen model with 72 billion parameters. |