PARSeqTokenizer classkeras_hub.tokenizers.PARSeqTokenizer(
vocabulary=[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
"I",
"J",
"K",
"L",
"M",
"N",
"O",
"P",
"Q",
"R",
"S",
"T",
"U",
"V",
"W",
"X",
"Y",
"Z",
"!",
'"',
"#",
"$",
"%",
"&",
"'",
"(",
")",
"*",
"+",
",",
"-",
".",
"/",
":",
";",
"<",
"=",
">",
"?",
"@",
"[",
"\\",
"]",
"^",
"_",
"`",
"{",
"|",
"}",
"~",
],
remove_whitespace=True,
normalize_unicode=True,
max_label_length=25,
dtype="int32",
**kwargs
)
A Tokenizer for PARSeq models, designed for OCR tasks.
This tokenizer converts strings into sequences of integer IDs or string tokens, and vice-versa. It supports various preprocessing steps such as whitespace removal, Unicode normalization, and limiting the maximum label length. It also provides functionality to save and load the vocabulary from a file.
Arguments
PARSEQ_VOCAB.True.True.25."int32".keras.layers.Layer constructor.from_preset methodPARSeqTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])