PARSeqCausalLMPreprocessor classkeras_hub.models.PARSeqCausalLMPreprocessor(
image_converter=None,
tokenizer=None,
sequence_length=25,
add_start_token=True,
add_end_token=True,
**kwargs
)
Base class for causal language modeling preprocessing layers.
CausalLMPreprocessor tasks wrap a keras_hub.tokenizer.Tokenizer to
create a preprocessing layer for causal language modeling tasks. It is
intended to be paired with a keras.models.CausalLM task.
All CausalLMPreprocessor take inputs a single input. This can be a single
string or a batch of strings. See examples below. These inputs
will be tokenized and padded/truncated to a fixed sequence length.
This layer will always output a (x, y, sample_weight) tuple, where x
is a dictionary with the tokenized inputs, y contains the tokens from x
offset by 1, and sample_weight marks where y contains padded
values. The exact contents of x will vary depending on the model being
used.
a CausalLMPreprocessor contains two extra methods, generate_preprocess
and generate_postprocess for use with generation. See examples below.
All CausalLMPreprocessor tasks include a from_preset() constructor
which can be used to load a pre-trained config and vocabularies. You can
call the from_preset() constructor directly on this base class, in which
case the correct class for you model will be automatically instantiated.
Examples.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"bert_base_en_uncased",
sequence_length=256, # Optional.
)
# Tokenize, mask and pack a single sentence.
x = "The quick brown fox jumped."
x, y, sample_weight = preprocessor(x)
# Tokenize and pad/truncate a batch of labeled sentences.
x = ["The quick brown fox jumped.", "Call me Ishmael."]
x, y, sample_weight = preprocessor(x)
# With a [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset).
ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Generate preprocess and postprocess.
x = preprocessor.generate_preprocess(x) # Tokenized numeric inputs.
x = preprocessor.generate_postprocess(x) # Detokenized string outputs.
from_preset methodPARSeqCausalLMPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Preprocessor subclass, you can run cls.presets.keys() to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset().
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"bert_base_en",
)
| Preset | Parameters | Description |
|---|---|---|
| parseq | 23.83M | Permuted autoregressive sequence (PARSeq) base model for scene text recognition |
tokenizer propertykeras_hub.models.PARSeqCausalLMPreprocessor.tokenizer
The tokenizer used to tokenize strings.