MoonshineTokenizer classkeras_hub.tokenizers.MoonshineTokenizer(proto, **kwargs)
Moonshine tokenizer layer based on keras_hub.models.LlamaTokenizer.
This tokenizer class is an alias of LlamaTokenizer but for the Moonshine
model. It uses a SentencePiece vocabulary to handle tokenization.
Arguments
str or bytes. Either a string path to a SentencePiece proto
file or a bytes object containing a serialized SentencePiece proto.
See the SentencePiece repository
for details on the format.LlamaTokenizer.Examples
from keras_hub.tokenizers import MoonshineTokenizer
# Initialize tokenizer.
tokenizer = MoonshineTokenizer(
"keras_hub/src/tests/test_data/llama_test_vocab.spm"
)
# Single input example.
single_input = "the quick brown fox"
single_tokens = tokenizer(single_input)
print("Single input tokenization:")
print(f"Input text: {single_input}")
print(f"Tokenized: {single_tokens}")
# Batched input example.
batch_input = ["the quick brown fox", "the earth is round"]
batch_tokens = tokenizer(batch_input)
print("Batch input tokenization:")
print(f"Input texts: {batch_input}")
print(f"Tokenized: {batch_tokens}")
# Detokenization example.
encoded = tokenizer(single_input)
decoded = tokenizer.detokenize(encoded)
print("Detokenization:")
print(f"Original text: {single_input}")
print(f"Encoded: {encoded}")
print(f"Decoded: {decoded}")
from_preset methodMoonshineTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| llama2_7b_en | 6.74B | 7 billion parameter, 32-layer, base LLaMA 2 model. |
| llama2_instruct_7b_en | 6.74B | 7 billion parameter, 32-layer, instruction tuned LLaMA 2 model. |
| vicuna_1.5_7b_en | 6.74B | 7 billion parameter, 32-layer, instruction tuned Vicuna v1.5 model. |
| llama2_7b_en_int8 | 6.74B | 7 billion parameter, 32-layer, base LLaMA 2 model with activation and weights quantized to int8. |
| llama2_instruct_7b_en_int8 | 6.74B | 7 billion parameter, 32-layer, instruction tuned LLaMA 2 model with activation and weights quantized to int8. |
| llama3.2_1b | 1.50B | 1 billion parameter, 16-layer, based LLaMA 3.2 model. |
| llama3.2_instruct_1b | 1.50B | 1 billion parameter, 16-layer, instruction tuned LLaMA 3.2. |
| llama3.2_guard_1b | 1.50B | 1 billion parameter, 16-layer, based LLaMA 3.2 model fine-tuned for consent safety classification. |
| llama3.2_3b | 3.61B | 3 billion parameter, 26-layer, based LLaMA 3.2 model. |
| llama3.2_instruct_3b | 3.61B | 3 billion parameter, 28-layer, instruction tuned LLaMA 3.2. |
| llama3_8b_en | 8.03B | 8 billion parameter, 32-layer, base LLaMA 3 model. |
| llama3_instruct_8b_en | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3 model. |
| llama3.1_8b | 8.03B | 8 billion parameter, 32-layer, based LLaMA 3.1 model. |
| llama3.1_instruct_8b | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3.1. |
| llama3.1_guard_8b | 8.03B | 8 billion parameter, 32-layer, LLaMA 3.1 fine-tuned for consent safety classification. |
| llama3_8b_en_int8 | 8.03B | 8 billion parameter, 32-layer, base LLaMA 3 model with activation and weights quantized to int8. |
| llama3_instruct_8b_en_int8 | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3 model with activation and weights quantized to int8. |