MixtralTokenizer
classkeras_hub.tokenizers.MixtralTokenizer(proto, **kwargs)
A SentencePiece tokenizer layer.
This layer provides an implementation of SentencePiece tokenization
as described in the SentencePiece paper
and the SentencePiece package.
The tokenization will run entirely within the Tensorflow graph, and can
be saved inside a keras.Model
.
By default, the layer will output a tf.RaggedTensor
where the last
dimension of the output is ragged after whitespace splitting and sub-word
tokenizing. If sequence_length
is set, the layer will output a dense
tf.Tensor
where all inputs have been padded or truncated to
sequence_length
. The output dtype can be controlled via the dtype
argument, which should be either an integer or string type.
Arguments
string
path to a SentencePiece proto file, or a
bytes
object with a serialized SentencePiece proto. See the
SentencePiece repository
for more details on the format.sequence_length
.sequence_length
.References
Examples
From bytes.
def train_sentence_piece_bytes(ds, size):
bytes_io = io.BytesIO()
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=size,
)
return bytes_io.getvalue()
# Train a sentencepiece proto.
ds = tf.data.Dataset.from_tensor_slices(["the quick brown fox."])
proto = train_sentence_piece_bytes(ds, 20)
# Tokenize inputs.
tokenizer = keras_hub.tokenizers.SentencePieceTokenizer(proto=proto)
ds = ds.map(tokenizer)
From a file.
def train_sentence_piece_file(ds, path, size):
with open(path, "wb") as model_file:
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=model_file,
vocab_size=size,
)
# Train a sentencepiece proto.
ds = tf.data.Dataset.from_tensor_slices(["the quick brown fox."])
proto = train_sentence_piece_file(ds, "model.spm", 20)
# Tokenize inputs.
tokenizer = keras_hub.tokenizers.SentencePieceTokenizer(proto="model.spm")
ds = ds.map(tokenizer)
from_preset
methodMixtralTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset | Parameters | Description |
---|---|---|
mixtral_8_7b_en | 46.70B | 32-layer Mixtral MoE model with 7 billionactive parameters and 8 experts per MoE layer. |
mixtral_8_instruct_7b_en | 46.70B | Instruction fine-tuned 32-layer Mixtral MoE modelwith 7 billion active parameters and 8 experts per MoE layer. |