MiTBackbone
classkeras_hub.models.MiTBackbone(
layerwise_depths,
num_layers,
layerwise_num_heads,
layerwise_sr_ratios,
max_drop_path_rate,
layerwise_patch_sizes,
layerwise_strides,
image_shape=(None, None, 3),
hidden_dims=None,
**kwargs
)
A backbone with feature pyramid outputs.
FeaturePyramidBackbone
extends Backbone
with a single pyramid_outputs
property for accessing the feature pyramid outputs of the model. Subclassers
should set the pyramid_outputs
property during the model constructor.
Example
input_data = np.random.uniform(0, 256, size=(2, 224, 224, 3))
# Convert to feature pyramid output format using ResNet.
backbone = ResNetBackbone.from_preset("resnet50")
model = keras.Model(
inputs=backbone.inputs, outputs=backbone.pyramid_outputs
)
model(input_data) # A dict containing the keys ["P2", "P3", "P4", "P5"]
from_preset
methodMiTBackbone.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Backbone
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as a
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Backbone.from_preset()
, or from
a model class like keras_hub.models.GemmaBackbone.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
For any Backbone
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
Preset | Parameters | Description |
---|---|---|
mit_b0_ade20k_512 | 3.32M | MiT (MixTransformer) model with 8 transformer blocks. |
mit_b0_cityscapes_1024 | 3.32M | MiT (MixTransformer) model with 8 transformer blocks. |
mit_b1_ade20k_512 | 13.16M | MiT (MixTransformer) model with 8 transformer blocks. |
mit_b1_cityscapes_1024 | 13.16M | MiT (MixTransformer) model with 8 transformer blocks. |
mit_b2_ade20k_512 | 24.20M | MiT (MixTransformer) model with 16 transformer blocks. |
mit_b2_cityscapes_1024 | 24.20M | MiT (MixTransformer) model with 16 transformer blocks. |
mit_b3_ade20k_512 | 44.08M | MiT (MixTransformer) model with 28 transformer blocks. |
mit_b3_cityscapes_1024 | 44.08M | MiT (MixTransformer) model with 28 transformer blocks. |
mit_b4_ade20k_512 | 60.85M | MiT (MixTransformer) model with 41 transformer blocks. |
mit_b4_cityscapes_1024 | 60.85M | MiT (MixTransformer) model with 41 transformer blocks. |
mit_b5_ade20k_640 | 81.45M | MiT (MixTransformer) model with 52 transformer blocks. |
mit_b5_cityscapes_1024 | 81.45M | MiT (MixTransformer) model with 52 transformer blocks. |