Llama3Tokenizer classkeras_hub.tokenizers.Llama3Tokenizer(
vocabulary=None,
merges=None,
bos_token="<|begin_of_text|>",
eos_token="<|end_of_text|>",
misc_special_tokens={"<|start_header_id|>", "<|end_header_id|>"},
**kwargs
)
Bype-pair encoding tokenizer layer.
This BPE tokenizer provides the same functionality as the official GPT-2
tokenizer. Given the same vocabulary which maps tokens to ids, and
merges which describes BPE merge rules, it should provide the same output
as OpenAI implementation (https://github.com/openai/gpt-2/blob/master/src/encoder.py).
Different from OpenAI, this implementation is graph-compatible, so you can
use it within a tf.data pipeline.
If input is a batch of strings (rank > 0):
By default, the layer will output a tf.RaggedTensor where the last
dimension of the output is ragged. If sequence_length is set, the layer
will output a dense tf.Tensor where all inputs have been padded or
truncated to sequence_length.
If input is a scalar string (rank == 0):
By default, the layer will output a dense tf.Tensor with static shape
[None]. If sequence_length is set, the output will be
a dense tf.Tensor of shape [sequence_length].
Arguments
sequence_length. Defaults to None.False.vocabulary. Defaults to None.Examples
Tokenize
>>> vocab = {"butter": 1, "fly": 2}
>>> merge = ["b u", "t t", "e r", "bu tt", "butt er", "f l", "fl y"]
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(vocab, merge)
>>> outputs = tokenizer("butterfly")
>>> np.array(outputs)
array([1, 2], dtype=int32)
>>> seq1, seq2 = tokenizer(["butterfly", "butter"])
>>> np.array(seq1)
array([1, 2])
>>> np.array(seq2)
array([1])
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(
... vocab, merge, sequence_length=2)
>>> seq1, seq2 = tokenizer(["butterfly", "butter"])
>>> np.array(seq1)
array([1, 2], dtype=int32)
>>> np.array(seq2)
array([1, 0], dtype=int32)
Detokenize
>>> vocab = {"butter": 1, "fly": 2}
>>> merge = ["b u", "t t", "e r", "bu tt", "butt er", "f l", "fl y"]
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(vocab, merge)
>>> tokenizer.detokenize([[1, 2]])
['butterfly']
from_preset methodLlama3Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| llama3.2_1b | 1.50B | 1 billion parameter, 16-layer, based LLaMA 3.2 model. |
| llama3.2_instruct_1b | 1.50B | 1 billion parameter, 16-layer, instruction tuned LLaMA 3.2. |
| llama3.2_guard_1b | 1.50B | 1 billion parameter, 16-layer, based LLaMA 3.2 model fine-tuned for consent safety classification. |
| llama3.2_3b | 3.61B | 3 billion parameter, 26-layer, based LLaMA 3.2 model. |
| llama3.2_instruct_3b | 3.61B | 3 billion parameter, 28-layer, instruction tuned LLaMA 3.2. |
| llama3_8b_en | 8.03B | 8 billion parameter, 32-layer, base LLaMA 3 model. |
| llama3_instruct_8b_en | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3 model. |
| llama3.1_8b | 8.03B | 8 billion parameter, 32-layer, based LLaMA 3.1 model. |
| llama3.1_instruct_8b | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3.1. |
| llama3.1_guard_8b | 8.03B | 8 billion parameter, 32-layer, LLaMA 3.1 fine-tuned for consent safety classification. |
| llama3_8b_en_int8 | 8.03B | 8 billion parameter, 32-layer, base LLaMA 3 model with activation and weights quantized to int8. |
| llama3_instruct_8b_en_int8 | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3 model with activation and weights quantized to int8. |