GptOssTokenizer classkeras_hub.tokenizers.GptOssTokenizer(vocabulary=None, merges=None, **kwargs)
A GptOss tokenizer using BytePair encoding.
Tokenizer is a subclass of keras_hub.tokenizers.BytePairTokenizer.
It uses a BytePair encoding model to tokenize strings. It also adds special
tokens for the start and end of a sequence.
Arguments
from_preset methodGptOssTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| gpt_oss_20b_en | 20.91B | This preset has 21 billion total parameters, with 3.6 billion active parameters, a 128k context length, and is de-quantized from MXFP4. |
| gpt_oss_safeguard_20b_en | 20.91B | Open-weight safety reasoning model with 21 billion total parameters,with 3.6 billion active parameters, a context length of over 128k, and is de-quantized from MXFP4. |
| gpt_oss_120b_en | 116.83B | This preset has 117 billion total parameters, with 5.1 billion active parameters, a 128k context length, and is de-quantized from MXFP4. |
| gpt_oss_safeguard_120b_en | 116.83B | Open-weight safety reasoning model with 117 billion total parameters,with 5.1 billion active parameters, a 128k context length, and is de-quantized from MXFP4. |