GptOssTokenizer

[source]

GptOssTokenizer class

keras_hub.tokenizers.GptOssTokenizer(vocabulary=None, merges=None, **kwargs)

A GptOss tokenizer using BytePair encoding.

Tokenizer is a subclass of keras_hub.tokenizers.BytePairTokenizer. It uses a BytePair encoding model to tokenize strings. It also adds special tokens for the start and end of a sequence.

Arguments

  • vocabulary: string or dict, maps token to integer ids. If it is a string, it should be the file path to a json file.
  • merges: string or list, contains the merge rule. If it is a string, it should be the file path to merge rules.

[source]

from_preset method

GptOssTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)

Instantiate a keras_hub.models.Tokenizer from a model preset.

A preset is a directory of configs, weights and other file assets used to save and load a pre-trained model. The preset can be passed as one of:

  1. a built-in preset identifier like 'bert_base_en'
  2. a Kaggle Models handle like 'kaggle://user/bert/keras/bert_base_en'
  3. a Hugging Face handle like 'hf://user/bert_base_en'
  4. a path to a local preset directory like './bert_base_en'

For any Tokenizer subclass, you can run cls.presets.keys() to list all built-in presets available on the class.

This constructor can be called in one of two ways. Either from the base class like keras_hub.models.Tokenizer.from_preset(), or from a model class like keras_hub.models.GemmaTokenizer.from_preset(). If calling from the base class, the subclass of the returning object will be inferred from the config in the preset directory.

Arguments

  • preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
  • load_weights: bool. If True, the weights will be loaded into the model architecture. If False, the weights will be randomly initialized.

Examples

# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")

# Tokenize some input.
tokenizer("The quick brown fox tripped.")

# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset Parameters Description
gpt_oss_20b_en 20.91B This preset has 21 billion total parameters, with 3.6 billion active parameters, a 128k context length, and is de-quantized from MXFP4.
gpt_oss_safeguard_20b_en 20.91B Open-weight safety reasoning model with 21 billion total parameters,with 3.6 billion active parameters, a context length of over 128k, and is de-quantized from MXFP4.
gpt_oss_120b_en 116.83B This preset has 117 billion total parameters, with 5.1 billion active parameters, a 128k context length, and is de-quantized from MXFP4.
gpt_oss_safeguard_120b_en 116.83B Open-weight safety reasoning model with 117 billion total parameters,with 5.1 billion active parameters, a 128k context length, and is de-quantized from MXFP4.