GptOssBackbone classkeras_hub.models.GptOssBackbone(
vocabulary_size,
num_layers,
num_query_heads,
hidden_dim,
intermediate_dim,
num_key_value_heads,
num_experts,
top_k=2,
rope_max_wavelength=10000,
rope_scaling_factor=1.0,
layer_norm_epsilon=1e-06,
sliding_window=4096,
head_dim=None,
dropout=0,
output_router_logits=False,
dtype=None,
**kwargs
)
A GPT-style Transformer with a Mixture of Experts.
This network implements a GPT-style decoder network with Mixture of Expert (MoE) layers, similar to the architecture described in "Mixtral of Experts" but with customizations found in some open-source GPT models. It includes the embedding lookups and transformer layers.
The default constructor gives a fully customizable, randomly initialized
GptOss model with any number of layers, heads, and embedding
dimensions. To load preset architectures and weights, use the from_preset
constructor.
Arguments
2.10000.1.0.1e-6.sliding_window number
of tokens are saved in the cache and used to generate the next
token. Defaults to 4096.None.keras.mixed_precision.DTypePolicy. The dtype to use
for model computations and weights. Note that some computations,
such as softmax and layer normalization, will always be done at
float32 precision regardless of dtype.Examples
import numpy as np
import keras_hub
# Load a pretrained GptOss backbone from a preset.
model = keras_hub.models.GptOssBackbone.from_preset("gpt_oss_20b_en")
input_data = {
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
"padding_mask": np.array(
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]], dtype="int32"
),
}
model(input_data)
# Randomly initialized GptOss decoder with custom config.
model = keras_hub.models.GptOssBackbone(
vocabulary_size=10,
hidden_dim=512,
num_layers=2,
num_query_heads=32,
num_key_value_heads=8,
intermediate_dim=1024,
num_experts=4,
top_k=2,
sliding_window=256,
layer_norm_epsilon=1e-6,
dtype="float32"
)
model(input_data)
from_preset methodGptOssBackbone.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Backbone from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as a
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''modelscope://user/bert_base_en''./bert_base_en'This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Backbone.from_preset(), or from
a model class like keras_hub.models.GemmaBackbone.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
For any Backbone subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
| Preset | Parameters | Description |
|---|---|---|
| gpt_oss_20b_en | 20.91B | This preset has 21 billion total parameters, with 3.6 billion active parameters, a 128k context length, and is de-quantized from MXFP4. |
| gpt_oss_safeguard_20b_en | 20.91B | Open-weight safety reasoning model with 21 billion total parameters,with 3.6 billion active parameters, a context length of over 128k, and is de-quantized from MXFP4. |
| gpt_oss_120b_en | 116.83B | This preset has 117 billion total parameters, with 5.1 billion active parameters, a 128k context length, and is de-quantized from MXFP4. |
| gpt_oss_safeguard_120b_en | 116.83B | Open-weight safety reasoning model with 117 billion total parameters,with 5.1 billion active parameters, a 128k context length, and is de-quantized from MXFP4. |
token_embedding propertykeras_hub.models.GptOssBackbone.token_embedding
A keras.layers.Embedding instance for embedding token ids.
This layer embeds integer token ids to the hidden dim of the model.