GPTNeoXCausalLMPreprocessor classkeras_hub.models.GPTNeoXCausalLMPreprocessor(
tokenizer, sequence_length=1024, add_start_token=True, add_end_token=True, **kwargs
)
GPT-NeoX Causal LM preprocessor.
This preprocessing layer is meant for use with
keras_hub.models.GPTNeoXCausalLM. By default, it will take in batches of
strings, and return outputs in a (x, y, sample_weight) format, where the
y label is the next token id in the x sequence.
For use with generation, the layer also exposes two methods
generate_preprocess() and generate_postprocess(). When this preprocessor
is attached to a keras_hub.models.GPTNeoXCausalLM instance, these methods
will be called implicitly in generate(). They can also be called
standalone (e.g. to precompute preprocessing inputs for generation in a
separate process).
Arguments
keras_hub.models.GPTNeoXTokenizer instance.True, the preprocessor will prepend the tokenizer
start token to each input sequence.True, the preprocessor will append the tokenizer
end token to each input sequence.Call arguments
tf.Tensor or list of python strings.None as the layer generates labels.None as the layer
generates label weights.sequence_length of
the layer.from_preset methodGPTNeoXCausalLMPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Preprocessor subclass, you can run cls.presets.keys() to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset().
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"bert_base_en",
)
tokenizer propertykeras_hub.models.GPTNeoXCausalLMPreprocessor.tokenizer
The tokenizer used to tokenize strings.