Gemma3Tokenizer
classkeras_hub.tokenizers.Gemma3Tokenizer(proto, **kwargs)
Gemma tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer
. Unlike the
underlying tokenizer, it will check for all special tokens needed by
Gemma models and provides a from_preset()
method to automatically
download a matching vocabulary for a Gemma preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor
where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor
with static shape [None]
.
Arguments
string
path to a SentencePiece proto file, or a
bytes
object with a serialized SentencePiece proto. See the
SentencePiece repository
for more details on the format.Examples
# Unbatched input.
tokenizer = keras_hub.models.Gemma3Tokenizer.from_preset(
"gemma_instruct_1b"
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="<pad>",
bos_piece="<bos>",
eos_piece="<eos>",
unk_piece="<unk>",
)
tokenizer = keras_hub.models.Gemma3Tokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset
methodGemma3Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset | Parameters | Description |
---|---|---|
gemma3_1b | 999.89M | 1 billion parameter, 26-layer, text-only pretrained Gemma3 model. |
gemma3_instruct_1b | 999.89M | 1 billion parameter, 26-layer, text-only instruction-tuned Gemma3 model. |
gemma3_4b_text | 3.88B | 4 billion parameter, 34-layer, text-only pretrained Gemma3 model. |
gemma3_instruct_4b_text | 3.88B | 4 billion parameter, 34-layer, text-only instruction-tuned Gemma3 model. |
gemma3_4b | 4.30B | 4 billion parameter, 34-layer, vision+text pretrained Gemma3 model. |
gemma3_instruct_4b | 4.30B | 4 billion parameter, 34-layer, vision+text instruction-tuned Gemma3 model. |
gemma3_12b_text | 11.77B | 12 billion parameter, 48-layer, text-only pretrained Gemma3 model. |
gemma3_instruct_12b_text | 11.77B | 12 billion parameter, 48-layer, text-only instruction-tuned Gemma3 model. |
gemma3_12b | 12.19B | 12 billion parameter, 48-layer, vision+text pretrained Gemma3 model. |
gemma3_instruct_12b | 12.19B | 12 billion parameter, 48-layer, vision+text instruction-tuned Gemma3 model. |
gemma3_27b_text | 27.01B | 27 billion parameter, 62-layer, text-only pretrained Gemma3 model. |
gemma3_instruct_27b_text | 27.01B | 27 billion parameter, 62-layer, text-only instruction-tuned Gemma3 model. |
gemma3_27b | 27.43B | 27 billion parameter, 62-layer, vision+text pretrained Gemma3 model. |
gemma3_instruct_27b | 27.43B | 27 billion parameter, 62-layer, vision+text instruction-tuned Gemma3 model. |