GemmaTokenizer
classkeras_hub.tokenizers.GemmaTokenizer(proto, **kwargs)
Gemma tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer
. Unlike the
underlying tokenizer, it will check for all special tokens needed by
Gemma models and provides a from_preset()
method to automatically
download a matching vocabulary for a Gemma preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor
where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor
with static shape [None]
.
Arguments
string
path to a SentencePiece proto file, or a
bytes
object with a serialized SentencePiece proto. See the
SentencePiece repository
for more details on the format.Examples
# Unbatched input.
tokenizer = keras_hub.models.GemmaTokenizer.from_preset("gemma_2b_en")
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="<pad>",
bos_piece="<bos>",
eos_piece="<eos>",
unk_piece="<unk>",
)
tokenizer = keras_hub.models.GemmaTokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset
methodGemmaTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset | Parameters | Description |
---|---|---|
gemma_2b_en | 2.51B | 2 billion parameter, 18-layer, base Gemma model. |
gemma_instruct_2b_en | 2.51B | 2 billion parameter, 18-layer, instruction tuned Gemma model. |
gemma_1.1_instruct_2b_en | 2.51B | 2 billion parameter, 18-layer, instruction tuned Gemma model. The 1.1 update improves model quality. |
code_gemma_1.1_2b_en | 2.51B | 2 billion parameter, 18-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion. The 1.1 update improves model quality. |
code_gemma_2b_en | 2.51B | 2 billion parameter, 18-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion. |
gemma2_2b_en | 2.61B | 2 billion parameter, 26-layer, base Gemma model. |
gemma2_instruct_2b_en | 2.61B | 2 billion parameter, 26-layer, instruction tuned Gemma model. |
shieldgemma_2b_en | 2.61B | 2 billion parameter, 26-layer, ShieldGemma model. |
gemma_7b_en | 8.54B | 7 billion parameter, 28-layer, base Gemma model. |
gemma_instruct_7b_en | 8.54B | 7 billion parameter, 28-layer, instruction tuned Gemma model. |
gemma_1.1_instruct_7b_en | 8.54B | 7 billion parameter, 28-layer, instruction tuned Gemma model. The 1.1 update improves model quality. |
code_gemma_7b_en | 8.54B | 7 billion parameter, 28-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion. |
code_gemma_instruct_7b_en | 8.54B | 7 billion parameter, 28-layer, instruction tuned CodeGemma model. This model has been trained for chat use cases related to code. |
code_gemma_1.1_instruct_7b_en | 8.54B | 7 billion parameter, 28-layer, instruction tuned CodeGemma model. This model has been trained for chat use cases related to code. The 1.1 update improves model quality. |
gemma2_9b_en | 9.24B | 9 billion parameter, 42-layer, base Gemma model. |
gemma2_instruct_9b_en | 9.24B | 9 billion parameter, 42-layer, instruction tuned Gemma model. |
shieldgemma_9b_en | 9.24B | 9 billion parameter, 42-layer, ShieldGemma model. |
gemma2_27b_en | 27.23B | 27 billion parameter, 42-layer, base Gemma model. |
gemma2_instruct_27b_en | 27.23B | 27 billion parameter, 42-layer, instruction tuned Gemma model. |
shieldgemma_27b_en | 27.23B | 27 billion parameter, 42-layer, ShieldGemma model. |
pali_gemma_3b_mix_224 | 2.92B | image size 224, mix fine tuned, text sequence length is 256 |
pali_gemma_3b_224 | 2.92B | image size 224, pre trained, text sequence length is 128 |
pali_gemma_3b_mix_448 | 2.92B | image size 448, mix fine tuned, text sequence length is 512 |
pali_gemma_3b_448 | 2.92B | image size 448, pre trained, text sequence length is 512 |
pali_gemma_3b_896 | 2.93B | image size 896, pre trained, text sequence length is 512 |