GemmaTokenizer classkeras_hub.tokenizers.GemmaTokenizer(proto, **kwargs)
Gemma tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer. Unlike the
underlying tokenizer, it will check for all special tokens needed by
Gemma models and provides a from_preset() method to automatically
download a matching vocabulary for a Gemma preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor with static shape [None].
Arguments
string path to a SentencePiece proto file, or a
bytes object with a serialized SentencePiece proto. See the
SentencePiece repository
for more details on the format.Examples
# Unbatched input.
tokenizer = keras_hub.models.GemmaTokenizer.from_preset("gemma_2b_en")
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="<pad>",
bos_piece="<bos>",
eos_piece="<eos>",
unk_piece="<unk>",
)
tokenizer = keras_hub.models.GemmaTokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset methodGemmaTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| vault_gemma_1b_en | 1.04B | 1 billion parameter, 26-layer, VaultGemma model. |
| gemma_2b_en | 2.51B | 2 billion parameter, 18-layer, base Gemma model. |
| gemma_instruct_2b_en | 2.51B | 2 billion parameter, 18-layer, instruction tuned Gemma model. |
| gemma_1.1_instruct_2b_en | 2.51B | 2 billion parameter, 18-layer, instruction tuned Gemma model. The 1.1 update improves model quality. |
| code_gemma_1.1_2b_en | 2.51B | 2 billion parameter, 18-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion. The 1.1 update improves model quality. |
| code_gemma_2b_en | 2.51B | 2 billion parameter, 18-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion. |
| gemma2_2b_en | 2.61B | 2 billion parameter, 26-layer, base Gemma model. |
| gemma2_instruct_2b_en | 2.61B | 2 billion parameter, 26-layer, instruction tuned Gemma model. |
| shieldgemma_2b_en | 2.61B | 2 billion parameter, 26-layer, ShieldGemma model. |
| c2s_scale_gemma_2_2b_en | 2.61B | A 2 billion parameter, single-cell biology-aware model built on the Gemma-2 architecture. |
| gemma_7b_en | 8.54B | 7 billion parameter, 28-layer, base Gemma model. |
| gemma_instruct_7b_en | 8.54B | 7 billion parameter, 28-layer, instruction tuned Gemma model. |
| gemma_1.1_instruct_7b_en | 8.54B | 7 billion parameter, 28-layer, instruction tuned Gemma model. The 1.1 update improves model quality. |
| code_gemma_7b_en | 8.54B | 7 billion parameter, 28-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion. |
| code_gemma_instruct_7b_en | 8.54B | 7 billion parameter, 28-layer, instruction tuned CodeGemma model. This model has been trained for chat use cases related to code. |
| code_gemma_1.1_instruct_7b_en | 8.54B | 7 billion parameter, 28-layer, instruction tuned CodeGemma model. This model has been trained for chat use cases related to code. The 1.1 update improves model quality. |
| gemma2_9b_en | 9.24B | 9 billion parameter, 42-layer, base Gemma model. |
| gemma2_instruct_9b_en | 9.24B | 9 billion parameter, 42-layer, instruction tuned Gemma model. |
| shieldgemma_9b_en | 9.24B | 9 billion parameter, 42-layer, ShieldGemma model. |
| gemma2_27b_en | 27.23B | 27 billion parameter, 42-layer, base Gemma model. |
| gemma2_instruct_27b_en | 27.23B | 27 billion parameter, 42-layer, instruction tuned Gemma model. |
| shieldgemma_27b_en | 27.23B | 27 billion parameter, 42-layer, ShieldGemma model. |
| c2s_scale_gemma_2_27b_en | 27.23B | A 27 billion parameter, single-cell biology-aware model built on the Gemma-2 architecture. |
| pali_gemma_3b_mix_224 | 2.92B | image size 224, mix fine tuned, text sequence length is 256 |
| pali_gemma_3b_224 | 2.92B | image size 224, pre trained, text sequence length is 128 |
| pali_gemma_3b_mix_448 | 2.92B | image size 448, mix fine tuned, text sequence length is 512 |
| pali_gemma_3b_448 | 2.92B | image size 448, pre trained, text sequence length is 512 |
| pali_gemma_3b_896 | 2.93B | image size 896, pre trained, text sequence length is 512 |
| pali_gemma2_mix_3b_224 | 3.03B | 3 billion parameter, image size 224, 27-layer for SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage model. This model has been fine-tuned on a wide range of vision-language tasks and domains. |
| pali_gemma2_pt_3b_224 | 3.03B | 3 billion parameter, image size 224, 27-layer for SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage model. This model has been pre-trained on a mixture of datasets. |
| pali_gemma_2_ft_docci_3b_448 | 3.03B | 3 billion parameter, image size 448, 27-layer for SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage model. This model has been fine-tuned on the DOCCI dataset for improved descriptions with fine-grained details. |
| pali_gemma2_mix_3b_448 | 3.03B | 3 billion parameter, image size 448, 27-layer for SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage model. This model has been fine-tuned on a wide range of vision-language tasks and domains. |
| pali_gemma2_pt_3b_448 | 3.03B | 3 billion parameter, image size 448, 27-layer for SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage model. This model has been pre-trained on a mixture of datasets. |
| pali_gemma2_pt_3b_896 | 3.04B | 3 billion parameter, image size 896, 27-layer for SigLIP-So400m vision encoder and 26-layer Gemma2 2B lanuage model. This model has been pre-trained on a mixture of datasets. |
| pali_gemma2_mix_10b_224 | 9.66B | 10 billion parameter, image size 224, 27-layer for SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage model. This model has been fine-tuned on a wide range of vision-language tasks and domains. |
| pali_gemma2_pt_10b_224 | 9.66B | 10 billion parameter, image size 224, 27-layer for SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage model. This model has been pre-trained on a mixture of datasets. |
| pali_gemma2_ft_docci_10b_448 | 9.66B | 10 billion parameter, 27-layer for SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage model. This model has been fine-tuned on the DOCCI dataset for improved descriptions with fine-grained details. |
| pali_gemma2_mix_10b_448 | 9.66B | 10 billion parameter, image size 448, 27-layer for SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage model. This model has been fine-tuned on a wide range of vision-language tasks and domains. |
| pali_gemma2_pt_10b_448 | 9.66B | 10 billion parameter, image size 448, 27-layer for SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage model. This model has been pre-trained on a mixture of datasets. |
| pali_gemma2_pt_10b_896 | 9.67B | 10 billion parameter, image size 896, 27-layer for SigLIP-So400m vision encoder and 42-layer Gemma2 9B lanuage model. This model has been pre-trained on a mixture of datasets. |
| pali_gemma2_mix_28b_224 | 27.65B | 28 billion parameter, image size 224, 27-layer for SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage model. This model has been fine-tuned on a wide range of vision-language tasks and domains. |
| pali_gemma2_mix_28b_448 | 27.65B | 28 billion parameter, image size 448, 27-layer for SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage model. This model has been fine-tuned on a wide range of vision-language tasks and domains. |
| pali_gemma2_pt_28b_224 | 27.65B | 28 billion parameter, image size 224, 27-layer for SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage model. This model has been pre-trained on a mixture of datasets. |
| pali_gemma2_pt_28b_448 | 27.65B | 28 billion parameter, image size 448, 27-layer for SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage model. This model has been pre-trained on a mixture of datasets. |
| pali_gemma2_pt_28b_896 | 27.65B | 28 billion parameter, image size 896, 27-layer for SigLIP-So400m vision encoder and 46-layer Gemma2 27B lanuage model. This model has been pre-trained on a mixture of datasets. |