ESMMaskedPLMPreprocessor classkeras_hub.models.ESMMaskedPLMPreprocessor(
tokenizer,
sequence_length=512,
truncate="round_robin",
mask_selection_rate=0.15,
mask_selection_length=96,
mask_token_rate=0.8,
random_token_rate=0.1,
**kwargs
)
ESM preprocessing for the masked language modeling task.
This preprocessing layer will prepare inputs for a masked language modeling
task. It is primarily intended for use with the
keras_hub.models.ESMMaskedPLM task model.
Preprocessing will occur in multiple steps.
tokenizer."[CLS]", "[SEP]" and
"[PAD]" tokens.mask_selection_rate.(x, y, sample_weight) tuple suitable for training with a
keras_hub.models.ESMMaskedPLM task model.Arguments
keras_hub.models.ESMTokenizer instance.sequence_length. The value can be either
round_robin or waterfall:"round_robin": Available space is assigned one token at a
time in a round-robin fashion to the inputs that still need
some, until the limit is reached."waterfall": The allocation of the budget is done using a
"waterfall" algorithm that allocates quota in a
left-to-right manner and fills up the buckets until we run
out of budget. It supports an arbitrary number of segments.1 - mask_token_rate - random_token_rate.Call arguments
None as the layer generates labels.None as the layer
generates label weights.Examples
Directly calling the layer on data.
preprocessor = keras_hub.models.ESMMaskedPLMPreprocessor.from_preset(
hf://facebook/esm2_t6_8M_UR50D
)
# Tokenize and mask a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize and mask a batch of single sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Tokenize and mask sentence pairs.
# In this case, always convert input to tensors before calling the layer.
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
preprocessor((first, second))
Mapping with tf.data.Dataset.
preprocessor = keras_hub.models.ESMMaskedPLMPreprocessor.from_preset(
hf://facebook/esm2_t6_8M_UR50D
)
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
# Map single sentences.
ds = tf.data.Dataset.from_tensor_slices(first)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map sentence pairs.
ds = tf.data.Dataset.from_tensor_slices((first, second))
# Watch out for tf.data's default unpacking of tuples here!
# Best to invoke the `preprocessor` directly in this case.
ds = ds.map(
lambda first, second: preprocessor(x=(first, second)),
num_parallel_calls=tf.data.AUTOTUNE,
)
from_preset methodESMMaskedPLMPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Preprocessor subclass, you can run cls.presets.keys() to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset().
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"bert_base_en",
)
| Preset | Parameters | Description |
|---|---|---|
| esm2_t6_8M | 7.41M | 6 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t12_35M | 33.27M | 12 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t30_150M | 147.73M | 30 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
| esm2_t33_650M | 649.40M | 33 transformer layers version of the ESM-2 protein language model, trained on the UniRef50 clustered protein sequence dataset. |
tokenizer propertykeras_hub.models.ESMMaskedPLMPreprocessor.tokenizer
The tokenizer used to tokenize strings.