ElectraTokenizer classkeras_hub.tokenizers.ElectraTokenizer(vocabulary, lowercase=False, **kwargs)
A ELECTRA tokenizer using WordPiece subword segmentation.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.WordPieceTokenizer.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor with static shape [None].
Arguments
True, the input text will be first lowered before
tokenization.Examples
# Custom Vocabulary.
vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
vocab += ["The", "quick", "brown", "fox", "jumped", "."]
# Instantiate the tokenizer.
tokenizer = keras_hub.models.ElectraTokenizer(vocabulary=vocab)
# Unbatched input.
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
from_preset methodElectraTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| electra_small_discriminator_uncased_en | 13.55M | 12-layer small ELECTRA discriminator model. All inputs are lowercased. Trained on English Wikipedia + BooksCorpus. |
| electra_small_generator_uncased_en | 13.55M | 12-layer small ELECTRA generator model. All inputs are lowercased. Trained on English Wikipedia + BooksCorpus. |
| electra_base_generator_uncased_en | 33.58M | 12-layer base ELECTRA generator model. All inputs are lowercased. Trained on English Wikipedia + BooksCorpus. |
| electra_large_generator_uncased_en | 51.07M | 24-layer large ELECTRA generator model. All inputs are lowercased. Trained on English Wikipedia + BooksCorpus. |
| electra_base_discriminator_uncased_en | 109.48M | 12-layer base ELECTRA discriminator model. All inputs are lowercased. Trained on English Wikipedia + BooksCorpus. |
| electra_large_discriminator_uncased_en | 335.14M | 24-layer large ELECTRA discriminator model. All inputs are lowercased. Trained on English Wikipedia + BooksCorpus. |