DINOV2Backbone classkeras_hub.models.DINOV2Backbone(
patch_size,
num_layers,
hidden_dim,
num_heads,
intermediate_dim,
layer_scale_init_value=1.0,
num_register_tokens=0,
use_mask_token=True,
use_swiglu_ffn=False,
dropout_rate=0.0,
drop_path_rate=0.0,
image_shape=(224, 224, 3),
position_embedding_shape=(518, 518, 3),
antialias_in_interpolation=False,
apply_layernorm=False,
data_format=None,
dtype=None,
name=None,
**kwargs
)
DINOV2 core network with hyperparameters.
DINOV2 offers a powerful, generalist visual backbone learned entirely from unlabeled images as described in DINOv2: Learning Robust Visual Features without Supervision
The default constructor gives a fully customizable, randomly initialized
DINOV2 model with any number of layers, heads, and embedding dimensions. To
load preset architectures and weights, use the from_preset constructor.
Note that this backbone is a Feature Pyramid Backbone that can output intermediate feature maps from different stages of the model. See the example below for how to access these feature pyramid outputs.
Note that this backbone supports interpolation of the position embeddings
to the input image shape. This is useful when the input image shape is
different from the shape used to train the position embeddings. The
position_embedding_shape argument is used to specify the original shape
used to train the position embeddings.
Arguments
1.0.0.True.False.0.0.0.0.(224, 224, 3).(518, 518).False.False.None or str. If specified, either "channels_last" or
"channels_first". The ordering of the dimensions in the
inputs. "channels_last" corresponds to inputs with shape
(batch_size, height, width, channels)
while "channels_first" corresponds to inputs with shape
(batch_size, channels, height, width). It defaults to the
image_data_format value found in your Keras config file at
~/.keras/keras.json. If you never set it, then it will be
"channels_last".keras.mixed_precision.DTypePolicy. The dtype to use
for the models computations and weights. Note that some
computations, such as softmax and layer normalization will always
be done a float32 precision regardless of dtype.Example
# Pretrained DINOV2 model.
input_data = {
"images": np.ones(shape=(1, 518, 518, 3), dtype="float32"),
}
model = keras_hub.models.DINOV2Backbone.from_preset(
"dinov2_base"
)
model(input_data)
# Pretrained DINOV2 model with custom image shape.
input_data = {
"images": np.ones(shape=(1, 224, 224, 3), dtype="float32"),
}
model = keras_hub.models.DINOV2Backbone.from_preset(
"dinov2_base", image_shape=(224, 224, 3)
)
model(input_data)
# Randomly initialized DINOV2 model with custom config.
model = keras_hub.models.DINOV2Backbone(
patch_size=14,
num_layers=2,
hidden_dim=32,
num_heads=2,
intermediate_dim=128,
image_shape=(224, 224, 3),
position_embedding_shape=(518, 518),
)
model(input_data)
# Accessing feature pyramid outputs.
backbone = keras_hub.models.DINOV2Backbone.from_preset(
"dinov2_base", image_shape=(224, 224, 3)
)
model = keras.Model(
inputs=backbone.inputs,
outputs=backbone.pyramid_outputs,
)
features = model(input_data)
from_preset methodDINOV2Backbone.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Backbone from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as a
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''modelscope://user/bert_base_en''./bert_base_en'This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Backbone.from_preset(), or from
a model class like keras_hub.models.GemmaBackbone.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
For any Backbone subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
| Preset | Parameters | Description |
|---|---|---|
| dinov2_small | 22.58M | Vision Transformer (small-sized model) trained using DINOv2. |
| dinov2_with_registers_small | 22.58M | Vision Transformer (small-sized model) trained using DINOv2, with registers. |
| dinov2_base | 87.63M | Vision Transformer (base-sized model) trained using DINOv2. |
| dinov2_with_registers_base | 87.64M | Vision Transformer (base-sized model) trained using DINOv2, with registers. |
| dinov2_large | 305.77M | Vision Transformer (large-sized model) trained using DINOv2. |
| dinov2_with_registers_large | 305.78M | Vision Transformer (large-sized model) trained using DINOv2, with registers. |
| dinov2_giant | 1.14B | Vision Transformer (giant-sized model) trained using DINOv2. |
| dinov2_with_registers_giant | 1.14B | Vision Transformer (giant-sized model) trained using DINOv2, with registers. |