CLIPTokenizer classkeras_hub.tokenizers.CLIPTokenizer(
vocabulary=None, merges=None, pad_with_end_token=False, **kwargs
)
A CLIP tokenizer using Byte-Pair Encoding subword segmentation.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.BytePairTokenizer. Unlike the
underlying tokenizer, it will check for all special tokens needed by CLIP
models and provides a from_preset() method to automatically download
a matching vocabulary for a CLIP preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor with static shape [None].
Arguments
end_token.Examples
# Unbatched input.
tokenizer = keras_hub.models.CLIPTokenizer.from_preset(
"clip_vit_base_patch32"
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
from_preset methodCLIPTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset | Parameters | Description |
|---|---|---|
| clip_vit_base_patch16 | 149.62M | 150 million parameter, 12-layer for vision and 12-layer for text, patch size of 16, CLIP model. |
| clip_vit_base_patch32 | 151.28M | 151 million parameter, 12-layer for vision and 12-layer for text, patch size of 32, CLIP model. |
| clip_vit_b_32_laion2b_s34b_b79k | 151.28M | 151 million parameter, 12-layer for vision and 12-layer for text, patch size of 32, Open CLIP model. |
| clip_vit_large_patch14 | 427.62M | 428 million parameter, 24-layer for vision and 12-layer for text, patch size of 14, CLIP model. |
| clip_vit_large_patch14_336 | 427.94M | 428 million parameter, 24-layer for vision and 12-layer for text, patch size of 14, image size of 336, CLIP model. |
| clip_vit_h_14_laion2b_s32b_b79k | 986.11M | 986 million parameter, 32-layer for vision and 24-layer for text, patch size of 14, Open CLIP model. |
| clip_vit_g_14_laion2b_s12b_b42k | 1.37B | 1.4 billion parameter, 40-layer for vision and 24-layer for text, patch size of 14, Open CLIP model. |
| clip_vit_bigg_14_laion2b_39b_b160k | 2.54B | 2.5 billion parameter, 48-layer for vision and 32-layer for text, patch size of 14, Open CLIP model. |