BloomTokenizer

[source]

BloomTokenizer class

keras_hub.tokenizers.BloomTokenizer(vocabulary=None, merges=None, **kwargs)

A BLOOM tokenizer using Byte-Pair Encoding subword segmentation.

This tokenizer class will tokenize raw strings into integer sequences and is based on keras_hub.tokenizers.BytePairTokenizer. Unlike the underlying tokenizer, it will check for all special tokens needed by BLOOM models and provides a from_preset() method to automatically download a matching vocabulary for a BLOOM preset.

If input is a batch of strings (rank > 0), the layer will output a tf.RaggedTensor where the last dimension of the output is ragged.

If input is a scalar string (rank == 0), the layer will output a dense tf.Tensor with static shape [None].

Arguments

  • vocabulary: string or dict, maps token to integer ids. If it is a string, it should be the file path to a json file.
  • merges: string or list, contains the merge rule. If it is a string, it should be the file path to merge rules. The merge rule file should have one merge rule per line. Every merge rule contains merge entities separated by a space.

Examples

# Unbatched input.
tokenizer = keras_hub.models.BloomTokenizer.from_preset("bloom_560m_multi")
tokenizer("The quick brown fox jumped.")

# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])

# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))

# Custom vocabulary.
vocab = {"<s>": 0, "</s>": 1, "<pad>": 2, "a": 3, "Ġquick": 4, "Ġfox": 5}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
merges += ["Ġ f", "o x", "Ġf ox"]
tokenizer = keras_hub.models.BloomTokenizer(vocabulary=vocab, merges=merges)
tokenizer("a quick fox.")

[source]

from_preset method

BloomTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)

Instantiate a keras_hub.models.Tokenizer from a model preset.

A preset is a directory of configs, weights and other file assets used to save and load a pre-trained model. The preset can be passed as one of:

  1. a built-in preset identifier like 'bert_base_en'
  2. a Kaggle Models handle like 'kaggle://user/bert/keras/bert_base_en'
  3. a Hugging Face handle like 'hf://user/bert_base_en'
  4. a path to a local preset directory like './bert_base_en'

For any Tokenizer subclass, you can run cls.presets.keys() to list all built-in presets available on the class.

This constructor can be called in one of two ways. Either from the base class like keras_hub.models.Tokenizer.from_preset(), or from a model class like keras_hub.models.GemmaTokenizer.from_preset(). If calling from the base class, the subclass of the returning object will be inferred from the config in the preset directory.

Arguments

  • preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
  • load_weights: bool. If True, the weights will be loaded into the model architecture. If False, the weights will be randomly initialized.

Examples

# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")

# Tokenize some input.
tokenizer("The quick brown fox tripped.")

# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset Parameters Description
bloom_560m_multi 559.21M 24-layer Bloom model with hidden dimension of 1024. trained on 45 natural languages and 12 programming languages.
bloomz_560m_multi 559.21M 24-layer Bloom model with hidden dimension of 1024. finetuned on crosslingual task mixture (xP3) dataset.
bloom_1.1b_multi 1.07B 24-layer Bloom model with hidden dimension of 1536. trained on 45 natural languages and 12 programming languages.
bloomz_1.1b_multi 1.07B 24-layer Bloom model with hidden dimension of 1536. finetuned on crosslingual task mixture (xP3) dataset.
bloom_1.7b_multi 1.72B 24-layer Bloom model with hidden dimension of 2048. trained on 45 natural languages and 12 programming languages.
bloomz_1.7b_multi 1.72B 24-layer Bloom model with hidden dimension of 2048. finetuned on crosslingual task mixture (xP3) dataset.
bloom_3b_multi 3.00B 30-layer Bloom model with hidden dimension of 2560. trained on 45 natural languages and 12 programming languages.
bloomz_3b_multi 3.00B 30-layer Bloom model with hidden dimension of 2560. finetuned on crosslingual task mixture (xP3) dataset.