TransformerDecoder layer

[source]

TransformerDecoder class

keras_hub.layers.TransformerDecoder(
    intermediate_dim,
    num_heads,
    dropout=0,
    activation="relu",
    layer_norm_epsilon=1e-05,
    kernel_initializer="glorot_uniform",
    bias_initializer="zeros",
    normalize_first=False,
    **kwargs
)

Transformer decoder.

This class follows the architecture of the transformer decoder layer in the paper Attention is All You Need. Users can instantiate multiple instances of this class to stack up a decoder.

By default, this layer will apply a causal mask to the decoder attention layer. You can also pass padding or attention masks directly to the layer during call, e.g. with decoder_padding_mask or decoder_attention_mask.

This layer can be called with either one or two inputs. The number of inputs must be consistent across all calls. The options are as follows: layer(decoder_sequence): no cross-attention will be built into the decoder block. This is useful when building a "decoder-only" transformer such as GPT-2. layer(decoder_sequence, encoder_sequence): cross-attention will be built into the decoder block. This is useful when building an "encoder-decoder" transformer, such as the original transformer model described in Attention is All You Need.

Arguments

  • intermediate_dim: int, the hidden size of feedforward network.
  • num_heads: int, the number of heads in MultiHeadAttention.
  • dropout: float. the dropout value, shared by MultiHeadAttention and feedforward network. Defaults to 0..
  • activation: string or keras.activations. the activation function of feedforward network. Defaults to "relu".
  • layer_norm_epsilon: float. The eps value in layer normalization components. Defaults to 1e-5.
  • kernel_initializer: string or keras.initializers initializer. The kernel initializer for the dense and multiheaded attention layers. Defaults to "glorot_uniform".
  • bias_initializer: string or keras.initializers initializer. The bias initializer for the dense and multiheaded attention layers. Defaults to "zeros".
  • normalize_first: bool. If True, the inputs to the attention layer(s) and the intermediate dense layer are normalized (similar to GPT-2). If set to False, outputs of attention layer and intermediate dense layer are normalized (similar to BERT). Defaults to False.
  • **kwargs: other keyword arguments passed to keras.layers.Layer, including name, trainable, dtype etc.

Example

# Create a single transformer decoder layer.
decoder = keras_hub.layers.TransformerDecoder(
    intermediate_dim=64, num_heads=8)

# Create a simple model containing the decoder.
decoder_input = keras.Input(shape=(10, 64))
encoder_input = keras.Input(shape=(10, 64))
output = decoder(decoder_input, encoder_input)
model = keras.Model(
    inputs=(decoder_input, encoder_input),
    outputs=output,
)

# Call decoder on the inputs.
decoder_input_data = np.random.uniform(size=(2, 10, 64))
encoder_input_data = np.random.uniform(size=(2, 10, 64))
decoder_output = model((decoder_input_data, encoder_input_data))

References


[source]

call method

TransformerDecoder.call(
    decoder_sequence,
    encoder_sequence=None,
    decoder_padding_mask=None,
    decoder_attention_mask=None,
    encoder_padding_mask=None,
    encoder_attention_mask=None,
    self_attention_cache=None,
    self_attention_cache_update_index=None,
    cross_attention_cache=None,
    cross_attention_cache_update_index=None,
    use_causal_mask=True,
    training=None,
)

Forward pass of the TransformerDecoder.

Arguments

  • decoder_sequence: a Tensor. The decoder input sequence.
  • encoder_sequence: a Tensor. The encoder input sequence. For decoder only models (like GPT2), this should be left None. Once the model is called once without an encoder_sequence, you cannot call it again with encoder_sequence.
  • decoder_padding_mask: a boolean Tensor, the padding mask of decoder sequence, must be of shape [batch_size, decoder_sequence_length].
  • decoder_attention_mask: a boolean Tensor. Customized decoder sequence mask, must be of shape [batch_size, decoder_sequence_length, decoder_sequence_length].
  • encoder_padding_mask: a boolean Tensor, the padding mask of encoder sequence, must be of shape [batch_size, encoder_sequence_length].
  • encoder_attention_mask: a boolean Tensor. Customized encoder sequence mask, must be of shape [batch_size, encoder_sequence_length, encoder_sequence_length].
  • self_attention_cache: a dense float Tensor. The cache of key/values pairs in the self-attention layer. Has shape [batch_size, 2, max_seq_len, num_heads, key_dims].
  • self_attention_cache_update_index: an int or int Tensor, the index at which to update the self_attention_cache. Usually, this is the index of the current token being processed during decoding.
  • cross_attention_cache: a dense float Tensor. The cache of key/value pairs in the cross-attention layer. Has shape [batch_size, 2, S, num_heads, key_dims].
  • cross_attention_cache_update_index: an int or int Tensor, the index at which to update the cross_attention_cache. Usually, this is either 0 (compute the entire cross_attention_cache), or None (reuse a previously computed cross_attention_cache).
  • use_causal_mask: bool, defaults to True. If true, a causal mask (masking out future input) is applied `on the decoder sequence.
  • training: a boolean indicating whether the layer should behave in training mode or in inference mode.

Returns

  • One of three things, depending on call arguments:
  • outputs, if self_attention_cache is `None.
  • (outputs, self_attention_cache), if self_attention_cache is set and the layer has no cross-attention.
  • (outputs, self_attention_cache, cross_attention_cache), if self_attention_cache and cross_attention_cache are set and the layer has cross-attention.