This script demonstrates the use of a convolutional LSTM network.

This network is used to predict the next frame of an artificially generated movie which contains moving squares.

from keras.models import Sequential
from keras.layers.convolutional import Conv3D
from keras.layers.convolutional_recurrent import ConvLSTM2D
from keras.layers.normalization import BatchNormalization
import numpy as np
import pylab as plt

# We create a layer which take as input movies of shape
# (n_frames, width, height, channels) and returns a movie
# of identical shape.

seq = Sequential()
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   input_shape=(None, 40, 40, 1),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())

seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())

seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())

seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())

seq.add(Conv3D(filters=1, kernel_size=(3, 3, 3),
               activation='sigmoid',
               padding='same', data_format='channels_last'))
seq.compile(loss='binary_crossentropy', optimizer='adadelta')


# Artificial data generation:
# Generate movies with 3 to 7 moving squares inside.
# The squares are of shape 1x1 or 2x2 pixels,
# which move linearly over time.
# For convenience we first create movies with bigger width and height (80x80)
# and at the end we select a 40x40 window.

def generate_movies(n_samples=1200, n_frames=15):
    row = 80
    col = 80
    noisy_movies = np.zeros((n_samples, n_frames, row, col, 1), dtype=np.float)
    shifted_movies = np.zeros((n_samples, n_frames, row, col, 1),
                              dtype=np.float)

    for i in range(n_samples):
        # Add 3 to 7 moving squares
        n = np.random.randint(3, 8)

        for j in range(n):
            # Initial position
            xstart = np.random.randint(20, 60)
            ystart = np.random.randint(20, 60)
            # Direction of motion
            directionx = np.random.randint(0, 3) - 1
            directiony = np.random.randint(0, 3) - 1

            # Size of the square
            w = np.random.randint(2, 4)

            for t in range(n_frames):
                x_shift = xstart + directionx * t
                y_shift = ystart + directiony * t
                noisy_movies[i, t, x_shift - w: x_shift + w,
                             y_shift - w: y_shift + w, 0] += 1

                # Make it more robust by adding noise.
                # The idea is that if during inference,
                # the value of the pixel is not exactly one,
                # we need to train the network to be robust and still
                # consider it as a pixel belonging to a square.
                if np.random.randint(0, 2):
                    noise_f = (-1)**np.random.randint(0, 2)
                    noisy_movies[i, t,
                                 x_shift - w - 1: x_shift + w + 1,
                                 y_shift - w - 1: y_shift + w + 1,
                                 0] += noise_f * 0.1

                # Shift the ground truth by 1
                x_shift = xstart + directionx * (t + 1)
                y_shift = ystart + directiony * (t + 1)
                shifted_movies[i, t, x_shift - w: x_shift + w,
                               y_shift - w: y_shift + w, 0] += 1

    # Cut to a 40x40 window
    noisy_movies = noisy_movies[::, ::, 20:60, 20:60, ::]
    shifted_movies = shifted_movies[::, ::, 20:60, 20:60, ::]
    noisy_movies[noisy_movies >= 1] = 1
    shifted_movies[shifted_movies >= 1] = 1
    return noisy_movies, shifted_movies

# Train the network
noisy_movies, shifted_movies = generate_movies(n_samples=1200)
seq.fit(noisy_movies[:1000], shifted_movies[:1000], batch_size=10,
        epochs=300, validation_split=0.05)

# Testing the network on one movie
# feed it with the first 7 positions and then
# predict the new positions
which = 1004
track = noisy_movies[which][:7, ::, ::, ::]

for j in range(16):
    new_pos = seq.predict(track[np.newaxis, ::, ::, ::, ::])
    new = new_pos[::, -1, ::, ::, ::]
    track = np.concatenate((track, new), axis=0)


# And then compare the predictions
# to the ground truth
track2 = noisy_movies[which][::, ::, ::, ::]
for i in range(15):
    fig = plt.figure(figsize=(10, 5))

    ax = fig.add_subplot(121)

    if i >= 7:
        ax.text(1, 3, 'Predictions !', fontsize=20, color='w')
    else:
        ax.text(1, 3, 'Initial trajectory', fontsize=20)

    toplot = track[i, ::, ::, 0]

    plt.imshow(toplot)
    ax = fig.add_subplot(122)
    plt.text(1, 3, 'Ground truth', fontsize=20)

    toplot = track2[i, ::, ::, 0]
    if i >= 2:
        toplot = shifted_movies[which][i - 1, ::, ::, 0]

    plt.imshow(toplot)
    plt.savefig('%i_animate.png' % (i + 1))