LlamaPreprocessor
classkeras_nlp.models.LlamaPreprocessor(
tokenizer, sequence_length=1024, add_start_token=True, add_end_token=False, **kwargs
)
A Llama preprocessing layer which tokenizes and packs inputs.
This preprocessing layer will do three things:
tokenizer
.keras_nlp.layers.StartEndPacker
.
with the appropriate tokens."token_ids"
, and "padding_mask"
that can be passed directly to keras_nlp.models.LlamaBackbone
.This layer can be used directly with tf.data.Dataset.map
to preprocess
string data in the (x, y, sample_weight)
format used by
keras.Model.fit
.
Arguments
keras_nlp.models.LlamaTokenizer
instance.True
, the preprocessor will prepend the tokenizer
start token to each input sequence. Default is True
.True
, the preprocessor will append the tokenizer
end token to each input sequence. Default is False
.Call arguments
sequence_length
of
the layer.Examples
Directly calling the from_preset().
preprocessor = keras_nlp.models.LlamaPreprocessor.from_preset(
"llama_base_en"
)
# Tokenize and pack a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize and a batch of single sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Preprocess a batch of sentence pairs.
# When handling multiple sequences, always convert to tensors first!
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
preprocessor((first, second))
Mapping with tf.data.Dataset
.
preprocessor = keras_nlp.models.LlamaPreprocessor.from_preset(
"llama_base_en"
)
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
label = tf.constant([1, 1])
# Map labeled single sentences.
ds = tf.data.Dataset.from_tensor_slices((first, label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled single sentences.
ds = tf.data.Dataset.from_tensor_slices(first)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map labeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices((first, second))
# Watch out for tf.data's default unpacking of tuples here!
# Best to invoke the `preprocessor` directly in this case.
ds = ds.map(
lambda first, second: preprocessor(x=(first, second)),
num_parallel_calls=tf.data.AUTOTUNE,
)
from_preset
methodLlamaPreprocessor.from_preset(preset, **kwargs)
Instantiate a keras_nlp.models.Preprocessor
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as a
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Preprocessor
subclass, you can run cls.presets.keys()
to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_nlp.models.BertPreprocessor.from_preset()
.
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_nlp.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_nlp.models.BertPreprocessor.from_preset(
"bert_base_en",
)
Preset name | Parameters | Description |
---|---|---|
llama2_7b_en | 6.74B | LLaMA 2 7B Base model |
llama2_instruct_7b_en | 6.74B | LLaMA 2 7B Chat model |
llama3_8b_en | 8.03B | LLaMA 3 8B Base model |
llama3_instruct_8b_en | 8.03B | LLaMA 3 8B Instruct model |
tokenizer
propertykeras_nlp.models.LlamaPreprocessor.tokenizer
The tokenizer used to tokenize strings.