DebertaV3Classifier
classkeras_nlp.models.DebertaV3Classifier(
backbone,
num_classes,
preprocessor=None,
activation=None,
hidden_dim=None,
dropout=0.0,
**kwargs
)
An end-to-end DeBERTa model for classification tasks.
This model attaches a classification head to a
keras_nlp.model.DebertaV3Backbone
model, mapping from the backbone
outputs to logit output suitable for a classification task. For usage of
this model with pre-trained weights, see the from_preset()
method.
This model can optionally be configured with a preprocessor
layer, in
which case it will automatically apply preprocessing to raw inputs during
fit()
, predict()
, and evaluate()
. This is done by default when
creating the model with from_preset()
.
Note: DebertaV3Backbone
has a performance issue on TPUs, and we recommend
other models for TPU training and inference.
Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available here.
Arguments
keras_nlp.models.DebertaV3
instance.keras_nlp.models.DebertaV3Preprocessor
or None
. If
None
, this model will not apply preprocessing, and inputs should
be preprocessed before calling the model.str
or callable. The
activation function to use on the model outputs. Set
activation="softmax"
to return output probabilities.
Defaults to None
.backbone.dropout
is used.Examples
Raw string data.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_nlp.models.DebertaV3Classifier.from_preset(
"deberta_v3_base_en",
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
Preprocessed integer data.
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_nlp.models.DebertaV3Classifier.from_preset(
"deberta_v3_base_en",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
Custom backbone and vocabulary.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(features)
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=10,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="[PAD]",
bos_piece="[CLS]",
eos_piece="[SEP]",
unk_piece="[UNK]",
)
tokenizer = keras_nlp.models.DebertaV3Tokenizer(
proto=bytes_io.getvalue(),
)
preprocessor = keras_nlp.models.DebertaV3Preprocessor(
tokenizer=tokenizer,
sequence_length=128,
)
backbone = keras_nlp.models.DebertaV3Backbone(
vocabulary_size=30552,
num_layers=4,
num_heads=4,
hidden_dim=256,
intermediate_dim=512,
max_sequence_length=128,
)
classifier = keras_nlp.models.DebertaV3Classifier(
backbone=backbone,
preprocessor=preprocessor,
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
from_preset
methodDebertaV3Classifier.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_nlp.models.Task
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as a
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Task
subclass, you can run cls.presets.keys()
to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_nlp.models.CausalLM.from_preset()
, or
from a model class like keras_nlp.models.BertClassifier.from_preset()
.
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_nlp.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_nlp.models.Classifier.from_preset(
"bert_base_en",
num_classes=2,
)
Preset name | Parameters | Description |
---|---|---|
deberta_v3_extra_small_en | 70.68M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
deberta_v3_small_en | 141.30M | 6-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
deberta_v3_base_en | 183.83M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
deberta_v3_large_en | 434.01M | 24-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
deberta_v3_base_multi | 278.22M | 12-layer DeBERTaV3 model where case is maintained. Trained on the 2.5TB multilingual CC100 dataset. |
backbone
propertykeras_nlp.models.DebertaV3Classifier.backbone
A keras_nlp.models.Backbone
model with the core architecture.
preprocessor
propertykeras_nlp.models.DebertaV3Classifier.preprocessor
A keras_nlp.models.Preprocessor
layer used to preprocess input.