SinePositionEncoding
classkeras_nlp.layers.SinePositionEncoding(max_wavelength=10000, **kwargs)
Sinusoidal positional encoding layer.
This layer calculates the position encoding as a mix of sine and cosine functions with geometrically increasing wavelengths. Defined and formulized in Attention is All You Need.
Takes as input an embedded token tensor. The input must have shape [batch_size, sequence_length, feature_size]. This layer will return a positional encoding the same size as the embedded token tensor, which can be added directly to the embedded token tensor.
Arguments
10000
.keras.layers.Layer
,
including name
, trainable
, dtype
etc.Call arguments
(batch_size, sequence_length, hidden_dim)
.Example
# create a simple embedding layer with sinusoidal positional encoding
seq_len = 100
vocab_size = 1000
embedding_dim = 32
inputs = keras.Input((seq_len,), dtype="float32")
embedding = keras.layers.Embedding(
input_dim=vocab_size, output_dim=embedding_dim
)(inputs)
positional_encoding = keras_hub.layers.SinePositionEncoding()(embedding)
outputs = embedding + positional_encoding
References