SGD
classtf_keras.optimizers.SGD(
learning_rate=0.01,
momentum=0.0,
nesterov=False,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
jit_compile=True,
name="SGD",
**kwargs
)
Gradient descent (with momentum) optimizer.
Update rule for parameter w
with gradient g
when momentum
is 0:
w = w - learning_rate * g
Update rule when momentum
is larger than 0:
velocity = momentum * velocity - learning_rate * g
w = w + velocity
When nesterov=True
, this rule becomes:
velocity = momentum * velocity - learning_rate * g
w = w + momentum * velocity - learning_rate * g
Arguments
Tensor
, floating point value, or a schedule that is a
keras.optimizers.schedules.LearningRateSchedule
, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.001.
momentum: float hyperparameter >= 0 that accelerates gradient descent in
the relevant direction and dampens oscillations.
Defaults to 0, i.e., vanilla gradient descent.
nesterov: boolean. Whether to apply Nesterov momentum.
Defaults to False
.use_ema=True
.
This is the momentum to use when computing
the EMA of the model's weights:
new_average = ema_momentum * old_average + (1 - ema_momentum) *
current_variable_value
.use_ema=True
. Every ema_overwrite_frequency
steps of iterations,
we overwrite the model variable by its moving average.
If None, the optimizer
does not overwrite model variables in the middle of training, and you
need to explicitly overwrite the variables at the end of training
by calling optimizer.finalize_variable_values()
(which updates the model
variables in-place). When using the built-in fit()
training loop,
this happens automatically after the last epoch,
and you don't need to do anything.tf.experimental.dtensor.Mesh
instance. When provided,
the optimizer will be run in DTensor mode, e.g. state
tracking variable will be a DVariable, and aggregation/reduction will
happen in the global DTensor context.Usage:
>>> opt = tf.keras.optimizers.SGD(learning_rate=0.1)
>>> var = tf.Variable(1.0)
>>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1
>>> opt.minimize(loss, [var])
>>> # Step is `- learning_rate * grad`
>>> var.numpy()
0.9
>>> opt = tf.keras.optimizers.SGD(0.1, momentum=0.9)
>>> var = tf.Variable(1.0)
>>> val0 = var.value()
>>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1
>>> # First step is `- learning_rate * grad`
>>> opt.minimize(loss, [var])
>>> val1 = var.value()
>>> (val0 - val1).numpy()
0.1
>>> # On later steps, step-size increases because of momentum
>>> opt.minimize(loss, [var])
>>> val2 = var.value()
>>> (val1 - val2).numpy()
0.18
Reference
nesterov=True
, See Sutskever et al., 2013.