RMSprop
classtf_keras.optimizers.RMSprop(
learning_rate=0.001,
rho=0.9,
momentum=0.0,
epsilon=1e-07,
centered=False,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=100,
jit_compile=True,
name="RMSprop",
**kwargs
)
Optimizer that implements the RMSprop algorithm.
The gist of RMSprop is to:
This implementation of RMSprop uses plain momentum, not Nesterov momentum.
The centered version additionally maintains a moving average of the gradients, and uses that average to estimate the variance.
Arguments
tf.keras.optimizers.schedules.LearningRateSchedule
instance.
Defaults to 0.001.
rho: float, defaults to 0.9. Discounting factor for the old gradients.
momentum: float, defaults to 0.0. If not 0.0., the optimizer tracks the
momentum value, with a decay rate equals to 1 - momentum
.
epsilon: A small constant for numerical stability. This epsilon is
"epsilon hat" in the Kingma and Ba paper (in the formula just before
Section 2.1), not the epsilon in Algorithm 1 of the paper.
Defaults to 1e-7
.
centered: Boolean. If True
, gradients are normalized by the estimated
variance of the gradient; if False, by the uncentered second moment.
Setting this to True
may help with training, but is slightly more
expensive in terms of computation and memory. Defaults to False
.
name: String. The name to use
for momentum accumulator weights created by
the optimizer.use_ema=True
.
This is the momentum to use when computing
the EMA of the model's weights:
new_average = ema_momentum * old_average + (1 - ema_momentum) *
current_variable_value
.use_ema=True
. Every ema_overwrite_frequency
steps of iterations,
we overwrite the model variable by its moving average.
If None, the optimizer
does not overwrite model variables in the middle of training, and you
need to explicitly overwrite the variables at the end of training
by calling optimizer.finalize_variable_values()
(which updates the model
variables in-place). When using the built-in fit()
training loop,
this happens automatically after the last epoch,
and you don't need to do anything.tf.experimental.dtensor.Mesh
instance. When provided,
the optimizer will be run in DTensor mode, e.g. state
tracking variable will be a DVariable, and aggregation/reduction will
happen in the global DTensor context.Usage:
>>> opt = tf.keras.optimizers.RMSprop(learning_rate=0.1)
>>> var1 = tf.Variable(10.0)
>>> loss = lambda: (var1 ** 2) / 2.0 # d(loss) / d(var1) = var1
>>> opt.minimize(loss, [var1])
>>> var1.numpy()
9.683772
Reference