Adamax
classtf_keras.optimizers.Adamax(
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-07,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
jit_compile=True,
name="Adamax",
**kwargs
)
Optimizer that implements the Adamax algorithm.
Adamax, a variant of Adam based on the infinity norm, is a first-order gradient-based optimization method. Due to its capability of adjusting the learning rate based on data characteristics, it is suited to learn time-variant process, e.g., speech data with dynamically changed noise conditions. Default parameters follow those provided in the paper (see references below).
Initialization:
m = 0 # Initialize initial 1st moment vector
u = 0 # Initialize the exponentially weighted infinity norm
t = 0 # Initialize timestep
The update rule for parameter w
with gradient g
is described at the end
of section 7.1 of the paper (see the referenece section):
t += 1
m = beta1 * m + (1 - beta) * g
u = max(beta2 * u, abs(g))
current_lr = learning_rate / (1 - beta1 ** t)
w = w - current_lr * m / (u + epsilon)
Arguments
tf.Tensor
, floating point value, a schedule that is a
tf.keras.optimizers.schedules.LearningRateSchedule
, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.001
.
beta_1: A float value or a constant float tensor. The exponential decay
rate for the 1st moment estimates.
beta_2: A float value or a constant float tensor. The exponential decay
rate for the exponentially weighted infinity norm.
epsilon: A small constant for numerical stability.
name: String. The name to use
for momentum accumulator weights created by
the optimizer.use_ema=True
.
This is the momentum to use when computing
the EMA of the model's weights:
new_average = ema_momentum * old_average + (1 - ema_momentum) *
current_variable_value
.use_ema=True
. Every ema_overwrite_frequency
steps of iterations,
we overwrite the model variable by its moving average.
If None, the optimizer
does not overwrite model variables in the middle of training, and you
need to explicitly overwrite the variables at the end of training
by calling optimizer.finalize_variable_values()
(which updates the model
variables in-place). When using the built-in fit()
training loop,
this happens automatically after the last epoch,
and you don't need to do anything.tf.experimental.dtensor.Mesh
instance. When provided,
the optimizer will be run in DTensor mode, e.g. state
tracking variable will be a DVariable, and aggregation/reduction will
happen in the global DTensor context.Reference