Nadam
classtf_keras.optimizers.Nadam(
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-07,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
jit_compile=True,
name="Nadam",
**kwargs
)
Optimizer that implements the Nadam algorithm.
Much like Adam is essentially RMSprop with momentum, Nadam is Adam with Nesterov momentum.
Arguments
tf.Tensor
, floating point value, a schedule that is a
tf.keras.optimizers.schedules.LearningRateSchedule
, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.001
.
beta_1: A float value or a constant float tensor, or a callable
that takes no arguments and returns the actual value to use. The
exponential decay rate for the 1st moment estimates.
Defaults to 0.9
.
beta_2: A float value or a constant float tensor, or a callable
that takes no arguments and returns the actual value to use. The
exponential decay rate for the 2nd moment estimates. Defaults to
0.999
.
epsilon: A small constant for numerical stability. This epsilon is
"epsilon hat" in the Kingma and Ba paper (in the formula just before
Section 2.1), not the epsilon in Algorithm 1 of the paper.
Defaults to 1e-7
.
name: String. The name to use
for momentum accumulator weights created by
the optimizer.use_ema=True
.
This is the momentum to use when computing
the EMA of the model's weights:
new_average = ema_momentum * old_average + (1 - ema_momentum) *
current_variable_value
.use_ema=True
. Every ema_overwrite_frequency
steps of iterations,
we overwrite the model variable by its moving average.
If None, the optimizer
does not overwrite model variables in the middle of training, and you
need to explicitly overwrite the variables at the end of training
by calling optimizer.finalize_variable_values()
(which updates the model
variables in-place). When using the built-in fit()
training loop,
this happens automatically after the last epoch,
and you don't need to do anything.tf.experimental.dtensor.Mesh
instance. When provided,
the optimizer will be run in DTensor mode, e.g. state
tracking variable will be a DVariable, and aggregation/reduction will
happen in the global DTensor context.Reference