MeanIoU
classtf_keras.metrics.MeanIoU(
num_classes: int,
name: Optional[str] = None,
dtype: Union[str, tensorflow.python.framework.dtypes.DType, NoneType] = None,
ignore_class: Optional[int] = None,
sparse_y_true: bool = True,
sparse_y_pred: bool = True,
axis: int = -1,
)
Computes the mean Intersection-Over-Union metric.
General definition and computation:
Intersection-Over-Union is a common evaluation metric for semantic image segmentation.
For an individual class, the IoU metric is defined as follows:
iou = true_positives / (true_positives + false_positives + false_negatives)
To compute IoUs, the predictions are accumulated in a confusion matrix,
weighted by sample_weight
and the metric is then calculated from it.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Note that this class first computes IoUs for all individual classes, then returns the mean of these values.
Arguments
ignore_class=None
), all classes are considered.False
, the tf.argmax
function
will be used to determine each sample's most likely associated label.False
, the tf.argmax
function
will be used to determine each sample's most likely associated label.-1
.Standalone usage:
>>> # cm = [[1, 1],
>>> # [1, 1]]
>>> # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1]
>>> # iou = true_positives / (sum_row + sum_col - true_positives))
>>> # result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 = 0.33
>>> m = tf.keras.metrics.MeanIoU(num_classes=2)
>>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1])
>>> m.result().numpy()
0.33333334
>>> m.reset_state()
>>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1],
... sample_weight=[0.3, 0.3, 0.3, 0.1])
>>> m.result().numpy()
0.23809525
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanIoU(num_classes=2)])