BinaryCrossentropy
classtf_keras.metrics.BinaryCrossentropy(
name="binary_crossentropy", dtype=None, from_logits=False, label_smoothing=0
)
Computes the crossentropy metric between the labels and predictions.
This is the crossentropy metric class to be used when there are only two label classes (0 and 1).
Arguments
label_smoothing=0.2
means that we will use a value of 0.1
for
label 0
and 0.9
for label 1
".Standalone usage:
>>> m = tf.keras.metrics.BinaryCrossentropy()
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]])
>>> m.result().numpy()
0.81492424
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.9162905
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='binary_crossentropy',
metrics=[tf.keras.metrics.BinaryCrossentropy()])
CategoricalCrossentropy
classtf_keras.metrics.CategoricalCrossentropy(
name="categorical_crossentropy",
dtype=None,
from_logits=False,
label_smoothing=0,
axis=-1,
)
Computes the crossentropy metric between the labels and predictions.
This is the crossentropy metric class to be used when there are multiple
label classes (2 or more). Here we assume that labels are given as a
one_hot
representation. eg., When labels values are [2, 0, 1],
y_true
= [[0, 0, 1], [1, 0, 0], [0, 1, 0]].
Arguments
label_smoothing=0.2
means that we will use a value of 0.1
for label
0
and 0.9
for label 1
"-1
.Standalone usage:
>>> # EPSILON = 1e-7, y = y_true, y` = y_pred
>>> # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
>>> # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]
>>> # xent = -sum(y * log(y'), axis = -1)
>>> # = -((log 0.95), (log 0.1))
>>> # = [0.051, 2.302]
>>> # Reduced xent = (0.051 + 2.302) / 2
>>> m = tf.keras.metrics.CategoricalCrossentropy()
>>> m.update_state([[0, 1, 0], [0, 0, 1]],
... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
>>> m.result().numpy()
1.1769392
>>> m.reset_state()
>>> m.update_state([[0, 1, 0], [0, 0, 1]],
... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]],
... sample_weight=tf.constant([0.3, 0.7]))
>>> m.result().numpy()
1.6271976
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='categorical_crossentropy',
metrics=[tf.keras.metrics.CategoricalCrossentropy()])
SparseCategoricalCrossentropy
classtf_keras.metrics.SparseCategoricalCrossentropy(
name: str = "sparse_categorical_crossentropy",
dtype: Union[str, tensorflow.python.framework.dtypes.DType, NoneType] = None,
from_logits: bool = False,
ignore_class: Optional[int] = None,
axis: int = -1,
)
Computes the crossentropy metric between the labels and predictions.
Use this crossentropy metric when there are two or more label classes.
We expect labels to be provided as integers. If you want to provide labels
using one-hot
representation, please use CategoricalCrossentropy
metric.
There should be # classes
floating point values per feature for y_pred
and a single floating point value per feature for y_true
.
In the snippet below, there is a single floating point value per example for
y_true
and # classes
floating pointing values per example for y_pred
.
The shape of y_true
is [batch_size]
and the shape of y_pred
is
[batch_size, num_classes]
.
Arguments
ignore_class=None
), all classes are considered.-1
.Standalone usage:
>>> # y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]]
>>> # logits = log(y_pred)
>>> # softmax = exp(logits) / sum(exp(logits), axis=-1)
>>> # softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]
>>> # xent = -sum(y * log(softmax), 1)
>>> # log(softmax) = [[-2.9957, -0.0513, -16.1181],
>>> # [-2.3026, -0.2231, -2.3026]]
>>> # y_true * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]]
>>> # xent = [0.0513, 2.3026]
>>> # Reduced xent = (0.0513 + 2.3026) / 2
>>> m = tf.keras.metrics.SparseCategoricalCrossentropy()
>>> m.update_state([1, 2],
... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
>>> m.result().numpy()
1.1769392
>>> m.reset_state()
>>> m.update_state([1, 2],
... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]],
... sample_weight=tf.constant([0.3, 0.7]))
>>> m.result().numpy()
1.6271976
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='sparse_categorical_crossentropy',
metrics=[tf.keras.metrics.SparseCategoricalCrossentropy()])
KLDivergence
classtf_keras.metrics.KLDivergence(name="kullback_leibler_divergence", dtype=None)
Computes Kullback-Leibler divergence metric between y_true
and
y_pred
.
metric = y_true * log(y_true / y_pred)
Arguments
Standalone usage:
>>> m = tf.keras.metrics.KLDivergence()
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]])
>>> m.result().numpy()
0.45814306
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.9162892
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='categorical_crossentropy',
metrics=[tf.keras.metrics.KLDivergence()])
Poisson
classtf_keras.metrics.Poisson(name="poisson", dtype=None)
Computes the Poisson score between y_true
and y_pred
.
🐟 🐟 🐟
It is defined as: poisson_score = y_pred - y_true * log(y_pred)
.
Arguments
Standalone usage:
>>> m = tf.keras.metrics.Poisson()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
>>> m.result().numpy()
0.49999997
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.99999994
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='categorical_crossentropy',
metrics=[tf.keras.metrics.Poisson()])