ZeroPadding3D
classtf_keras.layers.ZeroPadding3D(padding=(1, 1, 1), data_format=None, **kwargs)
Zero-padding layer for 3D data (spatial or spatio-temporal).
Examples
>>> input_shape = (1, 1, 2, 2, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> y = tf.keras.layers.ZeroPadding3D(padding=2)(x)
>>> print(y.shape)
(1, 5, 6, 6, 3)
Arguments
(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)
.((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
right_dim2_pad), (left_dim3_pad, right_dim3_pad))
channels_last
(default) or channels_first
.
The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape
(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)
while channels_first
corresponds to inputs with shape
(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)
.
When unspecified, uses
image_data_format
value found in your TF-Keras config file at
~/.keras/keras.json
(if exists) else 'channels_last'.
Defaults to 'channels_last'.Input shape
5D tensor with shape:
- If data_format
is "channels_last"
:
(batch_size, first_axis_to_pad, second_axis_to_pad,
third_axis_to_pad, depth)
- If data_format
is "channels_first"
:
(batch_size, depth, first_axis_to_pad, second_axis_to_pad,
third_axis_to_pad)
Output shape
5D tensor with shape:
- If data_format
is "channels_last"
:
(batch_size, first_padded_axis, second_padded_axis,
third_axis_to_pad, depth)
- If data_format
is "channels_first"
:
(batch_size, depth, first_padded_axis, second_padded_axis,
third_axis_to_pad)