ZeroPadding2D
classtf_keras.layers.ZeroPadding2D(padding=(1, 1), data_format=None, **kwargs)
Zero-padding layer for 2D input (e.g. picture).
This layer can add rows and columns of zeros at the top, bottom, left and right side of an image tensor.
Examples
>>> input_shape = (1, 1, 2, 2)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[[0 1]
[2 3]]]]
>>> y = tf.keras.layers.ZeroPadding2D(padding=1)(x)
>>> print(y)
tf.Tensor(
[[[[0 0]
[0 0]
[0 0]
[0 0]]
[[0 0]
[0 1]
[2 3]
[0 0]]
[[0 0]
[0 0]
[0 0]
[0 0]]]], shape=(1, 3, 4, 2), dtype=int64)
Arguments
(symmetric_height_pad, symmetric_width_pad)
.((top_pad, bottom_pad), (left_pad, right_pad))
channels_last
(default) or channels_first
.
The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape
(batch_size, height, width, channels)
while channels_first
corresponds to inputs with shape
(batch_size, channels, height, width)
.
When unspecified, uses
image_data_format
value found in your TF-Keras config file at
~/.keras/keras.json
(if exists) else 'channels_last'.
Defaults to 'channels_last'.Input shape
4D tensor with shape:
- If data_format
is "channels_last"
:
(batch_size, rows, cols, channels)
- If data_format
is "channels_first"
:
(batch_size, channels, rows, cols)
Output shape
4D tensor with shape:
- If data_format
is "channels_last"
:
(batch_size, padded_rows, padded_cols, channels)
- If data_format
is "channels_first"
:
(batch_size, channels, padded_rows, padded_cols)