UpSampling2D
classtf_keras.layers.UpSampling2D(
size=(2, 2), data_format=None, interpolation="nearest", **kwargs
)
Upsampling layer for 2D inputs.
Repeats the rows and columns of the data
by size[0]
and size[1]
respectively.
Examples
>>> input_shape = (2, 2, 1, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[[ 0 1 2]]
[[ 3 4 5]]]
[[[ 6 7 8]]
[[ 9 10 11]]]]
>>> y = tf.keras.layers.UpSampling2D(size=(1, 2))(x)
>>> print(y)
tf.Tensor(
[[[[ 0 1 2]
[ 0 1 2]]
[[ 3 4 5]
[ 3 4 5]]]
[[[ 6 7 8]
[ 6 7 8]]
[[ 9 10 11]
[ 9 10 11]]]], shape=(2, 2, 2, 3), dtype=int64)
Arguments
channels_last
(default) or channels_first
.
The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape
(batch_size, height, width, channels)
while channels_first
corresponds to inputs with shape
(batch_size, channels, height, width)
.
When unspecified, uses
image_data_format
value found in your TF-Keras config file at
~/.keras/keras.json
(if exists) else 'channels_last'.
Defaults to 'channels_last'."area"
, "bicubic"
, "bilinear"
,
"gaussian"
, "lanczos3"
, "lanczos5"
, "mitchellcubic"
,
"nearest"
.Input shape
4D tensor with shape:
- If data_format
is "channels_last"
:
(batch_size, rows, cols, channels)
- If data_format
is "channels_first"
:
(batch_size, channels, rows, cols)
Output shape
4D tensor with shape:
- If data_format
is "channels_last"
:
(batch_size, upsampled_rows, upsampled_cols, channels)
- If data_format
is "channels_first"
:
(batch_size, channels, upsampled_rows, upsampled_cols)