L1
classtf_keras.regularizers.L1(l1=0.01, **kwargs)
A regularizer that applies a L1 regularization penalty.
The L1 regularization penalty is computed as:
loss = l1 * reduce_sum(abs(x))
L1 may be passed to a layer as a string identifier:
>>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l1')
In this case, the default value used is l1=0.01
.
Arguments
L2
classtf_keras.regularizers.L2(l2=0.01, **kwargs)
A regularizer that applies a L2 regularization penalty.
The L2 regularization penalty is computed as:
loss = l2 * reduce_sum(square(x))
L2 may be passed to a layer as a string identifier:
>>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l2')
In this case, the default value used is l2=0.01
.
Arguments
L1L2
classtf_keras.regularizers.L1L2(l1=0.0, l2=0.0)
A regularizer that applies both L1 and L2 regularization penalties.
The L1 regularization penalty is computed as:
loss = l1 * reduce_sum(abs(x))
The L2 regularization penalty is computed as
loss = l2 * reduce_sum(square(x))
L1L2 may be passed to a layer as a string identifier:
>>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l1_l2')
In this case, the default values used are l1=0.01
and l2=0.01
.
Arguments
OrthogonalRegularizer
classtf_keras.regularizers.OrthogonalRegularizer(factor=0.01, mode="rows")
Regularizer that encourages input vectors to be orthogonal to each other.
It can be applied to either the rows of a matrix (mode="rows"
) or its
columns (mode="columns"
). When applied to a Dense
kernel of shape
(input_dim, units)
, rows mode will seek to make the feature vectors
(i.e. the basis of the output space) orthogonal to each other.
Arguments
factor
times the mean of the dot products between
the L2-normalized rows (if mode="rows"
, or columns if
mode="columns"
) of the inputs, excluding the product of each
row/column with itself. Defaults to 0.01.{"rows", "columns"}
. Defaults to "rows"
. In rows
mode, the regularization effect seeks to make the rows of the input
orthogonal to each other. In columns mode, it seeks to make the columns
of the input orthogonal to each other.Example
>>> regularizer = tf.keras.regularizers.OrthogonalRegularizer(factor=0.01)
>>> layer = tf.keras.layers.Dense(units=4, kernel_regularizer=regularizer)