GRU
classtf_keras.layers.GRU(
units,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
unroll=False,
time_major=False,
reset_after=True,
**kwargs
)
Gated Recurrent Unit - Cho et al. 2014.
See the TF-Keras RNN API guide for details about the usage of RNN API.
Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or pure-TensorFlow) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the cuDNN kernel (see below for details), the layer will use a fast cuDNN implementation.
The requirements to use the cuDNN implementation are:
activation
== tanh
recurrent_activation
== sigmoid
recurrent_dropout
== 0unroll
is False
use_bias
is True
reset_after
is True
There are two variants of the GRU implementation. The default one is based on v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original and has the order reversed.
The second variant is compatible with CuDNNGRU (GPU-only) and allows
inference on CPU. Thus it has separate biases for kernel
and
recurrent_kernel
. To use this variant, set reset_after=True
and
recurrent_activation='sigmoid'
.
For example:
>>> inputs = tf.random.normal([32, 10, 8])
>>> gru = tf.keras.layers.GRU(4)
>>> output = gru(inputs)
>>> print(output.shape)
(32, 4)
>>> gru = tf.keras.layers.GRU(4, return_sequences=True, return_state=True)
>>> whole_sequence_output, final_state = gru(inputs)
>>> print(whole_sequence_output.shape)
(32, 10, 4)
>>> print(final_state.shape)
(32, 4)
Arguments
tanh
).
If you pass None
, no activation is applied
(ie. "linear" activation: a(x) = x
).sigmoid
).
If you pass None
, no activation is applied
(ie. "linear" activation: a(x) = x
).True
), whether the layer uses a bias vector.kernel
weights matrix,
used for the linear transformation of the inputs. Default:
glorot_uniform
.recurrent_kernel
weights matrix, used for the linear transformation of the recurrent
state. Default: orthogonal
.zeros
.kernel
weights
matrix. Default: None
.recurrent_kernel
weights matrix. Default: None
.None
.None
.kernel
weights
matrix. Default: None
.recurrent_kernel
weights matrix. Default: None
.None
.False
.False
.False
).
If True, process the input sequence backwards and return the
reversed sequence.inputs
and outputs
tensors.
If True, the inputs and outputs will be in shape
[timesteps, batch, feature]
, whereas in the False case, it will be
[batch, timesteps, feature]
. Using time_major = True
is a bit more
efficient because it avoids transposes at the beginning and end of the
RNN calculation. However, most TensorFlow data is batch-major, so by
default this function accepts input and emits output in batch-major
form.Call arguments
[batch, timesteps, feature]
.[samples, timesteps]
indicating whether
a given timestep should be masked (optional).
An individual True
entry indicates that the corresponding timestep
should be utilized, while a False
entry indicates that the
corresponding timestep should be ignored. Defaults to None
.dropout
or
recurrent_dropout
is used (optional). Defaults to None
.None
causes creation
of zero-filled initial state tensors). Defaults to None
.