Discretization
classtf_keras.layers.Discretization(
bin_boundaries=None,
num_bins=None,
epsilon=0.01,
output_mode="int",
sparse=False,
**kwargs
)
A preprocessing layer which buckets continuous features by ranges.
This layer will place each element of its input data into one of several contiguous ranges and output an integer index indicating which range each element was placed in.
For an overview and full list of preprocessing layers, see the preprocessing guide.
Input shape
Any tf.Tensor
or tf.RaggedTensor
of dimension 2 or higher.
Output shape
Same as input shape.
Arguments
-inf
and inf
, so bin_boundaries=[0., 1., 2.]
generates bins (-inf, 0.)
, [0., 1.)
, [1., 2.)
, and [2., +inf)
.
If this option is set, adapt()
should not be called.adapt()
should be called to learn the bin boundaries."int"
, "one_hot"
, "multi_hot"
, or
"count"
configuring the layer as follows:"int"
: Return the discretized bin indices directly."one_hot"
: Encodes each individual element in the input into an
array the same size as num_bins
, containing a 1 at the input's bin
index. If the last dimension is size 1, will encode on that
dimension. If the last dimension is not size 1, will append a new
dimension for the encoded output."multi_hot"
: Encodes each sample in the input into a single array
the same size as num_bins
, containing a 1 for each bin index
index present in the sample. Treats the last dimension as the sample
dimension, if input shape is (..., sample_length)
, output shape
will be (..., num_tokens)
."count"
: As "multi_hot"
, but the int array contains a count of
the number of times the bin index appeared in the sample.
Defaults to "int"
."one_hot"
, "multi_hot"
,
and "count"
output modes. If True, returns a SparseTensor
instead of
a dense Tensor
. Defaults to False
.Examples
Bucketize float values based on provided buckets.
>>> input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]])
>>> layer = tf.keras.layers.Discretization(bin_boundaries=[0., 1., 2.])
>>> layer(input)
<tf.Tensor: shape=(2, 4), dtype=int64, numpy=
array([[0, 2, 3, 1],
[1, 3, 2, 1]])>
Bucketize float values based on a number of buckets to compute.
>>> input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]])
>>> layer = tf.keras.layers.Discretization(num_bins=4, epsilon=0.01)
>>> layer.adapt(input)
>>> layer(input)
<tf.Tensor: shape=(2, 4), dtype=int64, numpy=
array([[0, 2, 3, 2],
[1, 3, 3, 1]])>