StringLookup
classtf_keras.layers.StringLookup(
max_tokens=None,
num_oov_indices=1,
mask_token=None,
oov_token="[UNK]",
vocabulary=None,
idf_weights=None,
encoding="utf-8",
invert=False,
output_mode="int",
sparse=False,
pad_to_max_tokens=False,
**kwargs
)
A preprocessing layer which maps string features to integer indices.
This layer translates a set of arbitrary strings into integer output via a
table-based vocabulary lookup. This layer will perform no splitting or
transformation of input strings. For a layer that can split and tokenize
natural language, see the tf.keras.layers.TextVectorization
layer.
The vocabulary for the layer must be either supplied on construction or
learned via adapt()
. During adapt()
, the layer will analyze a data set,
determine the frequency of individual strings tokens, and create a
vocabulary from them. If the vocabulary is capped in size, the most frequent
tokens will be used to create the vocabulary and all others will be treated
as out-of-vocabulary (OOV).
There are two possible output modes for the layer.
When output_mode
is "int"
,
input strings are converted to their index in the vocabulary (an integer).
When output_mode
is "multi_hot"
, "count"
, or "tf_idf"
, input strings
are encoded into an array where each dimension corresponds to an element in
the vocabulary.
The vocabulary can optionally contain a mask token as well as an OOV token
(which can optionally occupy multiple indices in the vocabulary, as set
by num_oov_indices
).
The position of these tokens in the vocabulary is fixed. When output_mode
is "int"
, the vocabulary will begin with the mask token (if set), followed
by OOV indices, followed by the rest of the vocabulary. When output_mode
is "multi_hot"
, "count"
, or "tf_idf"
the vocabulary will begin with
OOV indices and instances of the mask token will be dropped.
For an overview and full list of preprocessing layers, see the preprocessing guide.
Arguments
pad_to_max_tokens=True
. If None, there is no cap on the size of the
vocabulary. Note that this size includes the OOV and mask tokens.
Defaults to None
.1
.output_mode
is
"int"
, the token is included in vocabulary and mapped to index 0. In
other output modes, the token will not appear in the vocabulary and
instances of the mask token in the input will be dropped. If set to
None, no mask term will be added. Defaults to None
.invert
is True. The token to return for OOV
indices. Defaults to "[UNK]"
.adapt()
the layer.output_mode
is "tf_idf"
. A tuple, list,
1D numpy array, or 1D tensor or the same length as the vocabulary,
containing the floating point inverse document frequency weights, which
will be multiplied by per sample term counts for the final tf_idf
weight. If the vocabulary
argument is set, and output_mode
is
"tf_idf"
, this argument must be supplied.output_mode
is "int"
. If True, this layer will
map indices to vocabulary items instead of mapping vocabulary items to
indices. Defaults to False
."int"
, "one_hot"
, "multi_hot"
, "count"
, or "tf_idf"
configuring the layer as follows:"int"
: Return the raw integer indices of the input tokens."one_hot"
: Encodes each individual element in the input into an
array the same size as the vocabulary, containing a 1 at the element
index. If the last dimension is size 1, will encode on that
dimension. If the last dimension is not size 1, will append a new
dimension for the encoded output."multi_hot"
: Encodes each sample in the input into a single array
the same size as the vocabulary, containing a 1 for each vocabulary
term present in the sample. Treats the last dimension as the sample
dimension, if input shape is (..., sample_length), output shape will
be (..., num_tokens)."count"
: As "multi_hot"
, but the int array contains a count of
the number of times the token at that index appeared in the sample."tf_idf"
: As "multi_hot"
, but the TF-IDF algorithm is applied to
find the value in each token slot.
For "int"
output, any shape of input and output is supported. For all
other output modes, currently only output up to rank 2 is supported.
Defaults to "int"
.output_mode
is "multi_hot"
,
"count"
, or "tf_idf"
. If True, the output will have its feature axis
padded to max_tokens
even if the number of unique tokens in the
vocabulary is less than max_tokens, resulting in a tensor of shape
[batch_size, max_tokens] regardless of vocabulary size. Defaults to
False
.output_mode
is "multi_hot"
,
"count"
, or "tf_idf"
. If True, returns a SparseTensor
instead of a
dense Tensor
. Defaults to False
."utf-8"
.Examples
Creating a lookup layer with a known vocabulary
This example creates a lookup layer with a pre-existing vocabulary.
>>> vocab = ["a", "b", "c", "d"]
>>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]])
>>> layer = tf.keras.layers.StringLookup(vocabulary=vocab)
>>> layer(data)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[1, 3, 4],
[4, 0, 2]])>
Creating a lookup layer with an adapted vocabulary
This example creates a lookup layer and generates the vocabulary by analyzing the dataset.
>>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]])
>>> layer = tf.keras.layers.StringLookup()
>>> layer.adapt(data)
>>> layer.get_vocabulary()
['[UNK]', 'd', 'z', 'c', 'b', 'a']
Note that the OOV token "[UNK]"
has been added to the vocabulary.
The remaining tokens are sorted by frequency
("d"
, which has 2 occurrences, is first) then by inverse sort order.
>>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]])
>>> layer = tf.keras.layers.StringLookup()
>>> layer.adapt(data)
>>> layer(data)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[5, 3, 1],
[1, 2, 4]])>
Lookups with multiple OOV indices
This example demonstrates how to use a lookup layer with multiple OOV indices. When a layer is created with more than one OOV index, any OOV values are hashed into the number of OOV buckets, distributing OOV values in a deterministic fashion across the set.
>>> vocab = ["a", "b", "c", "d"]
>>> data = tf.constant([["a", "c", "d"], ["m", "z", "b"]])
>>> layer = tf.keras.layers.StringLookup(vocabulary=vocab,
... num_oov_indices=2)
>>> layer(data)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[2, 4, 5],
[0, 1, 3]])>
Note that the output for OOV value 'm' is 0, while the output for OOV value 'z' is 1. The in-vocab terms have their output index increased by 1 from earlier examples (a maps to 2, etc) in order to make space for the extra OOV value.
One-hot output
Configure the layer with output_mode='one_hot'
. Note that the first
num_oov_indices
dimensions in the one_hot encoding represent OOV values.
>>> vocab = ["a", "b", "c", "d"]
>>> data = tf.constant(["a", "b", "c", "d", "z"])
>>> layer = tf.keras.layers.StringLookup(
... vocabulary=vocab, output_mode='one_hot')
>>> layer(data)
<tf.Tensor: shape=(5, 5), dtype=float32, numpy=
array([[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0.]], dtype=float32)>
Multi-hot output
Configure the layer with output_mode='multi_hot'
. Note that the first
num_oov_indices
dimensions in the multi_hot encoding represent OOV values.
>>> vocab = ["a", "b", "c", "d"]
>>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]])
>>> layer = tf.keras.layers.StringLookup(
... vocabulary=vocab, output_mode='multi_hot')
>>> layer(data)
<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
array([[0., 1., 0., 1., 1.],
[1., 0., 1., 0., 1.]], dtype=float32)>
Token count output
Configure the layer with output_mode='count'
. As with multi_hot output,
the first num_oov_indices
dimensions in the output represent OOV values.
>>> vocab = ["a", "b", "c", "d"]
>>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]])
>>> layer = tf.keras.layers.StringLookup(
... vocabulary=vocab, output_mode='count')
>>> layer(data)
<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
array([[0., 1., 0., 1., 2.],
[2., 0., 1., 0., 1.]], dtype=float32)>
TF-IDF output
Configure the layer with output_mode="tf_idf"
. As with multi_hot output,
the first num_oov_indices
dimensions in the output represent OOV values.
Each token bin will output token_count * idf_weight
, where the idf weights
are the inverse document frequency weights per token. These should be
provided along with the vocabulary. Note that the idf_weight
for OOV
values will default to the average of all idf weights passed in.
>>> vocab = ["a", "b", "c", "d"]
>>> idf_weights = [0.25, 0.75, 0.6, 0.4]
>>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]])
>>> layer = tf.keras.layers.StringLookup(output_mode="tf_idf")
>>> layer.set_vocabulary(vocab, idf_weights=idf_weights)
>>> layer(data)
<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
array([[0. , 0.25, 0. , 0.6 , 0.8 ],
[1.0 , 0. , 0.75, 0. , 0.4 ]], dtype=float32)>
To specify the idf weights for oov values, you will need to pass the entire vocabularly including the leading oov token.
>>> vocab = ["[UNK]", "a", "b", "c", "d"]
>>> idf_weights = [0.9, 0.25, 0.75, 0.6, 0.4]
>>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]])
>>> layer = tf.keras.layers.StringLookup(output_mode="tf_idf")
>>> layer.set_vocabulary(vocab, idf_weights=idf_weights)
>>> layer(data)
<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
array([[0. , 0.25, 0. , 0.6 , 0.8 ],
[1.8 , 0. , 0.75, 0. , 0.4 ]], dtype=float32)>
When adapting the layer in "tf_idf"
mode, each input sample will be
considered a document, and IDF weight per token will be calculated as
log(1 + num_documents / (1 + token_document_count))
.
Inverse lookup
This example demonstrates how to map indices to strings using this layer.
(You can also use adapt()
with inverse=True
, but for simplicity we'll
pass the vocab in this example.)
>>> vocab = ["a", "b", "c", "d"]
>>> data = tf.constant([[1, 3, 4], [4, 0, 2]])
>>> layer = tf.keras.layers.StringLookup(vocabulary=vocab, invert=True)
>>> layer(data)
<tf.Tensor: shape=(2, 3), dtype=string, numpy=
array([[b'a', b'c', b'd'],
[b'd', b'[UNK]', b'b']], dtype=object)>
Note that the first index correspond to the oov token by default.
Forward and inverse lookup pairs
This example demonstrates how to use the vocabulary of a standard lookup layer to create an inverse lookup layer.
>>> vocab = ["a", "b", "c", "d"]
>>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]])
>>> layer = tf.keras.layers.StringLookup(vocabulary=vocab)
>>> i_layer = tf.keras.layers.StringLookup(vocabulary=vocab, invert=True)
>>> int_data = layer(data)
>>> i_layer(int_data)
<tf.Tensor: shape=(2, 3), dtype=string, numpy=
array([[b'a', b'c', b'd'],
[b'd', b'[UNK]', b'b']], dtype=object)>
In this example, the input value "z"
resulted in an output of "[UNK]"
,
since 1000 was not in the vocabulary - it got represented as an OOV, and all
OOV values are returned as "[UNK]"
in the inverse layer. Also, note that
for the inverse to work, you must have already set the forward layer
vocabulary either directly or via adapt()
before calling
get_vocabulary()
.