Hashing
classtf_keras.layers.Hashing(
num_bins, mask_value=None, salt=None, output_mode="int", sparse=False, **kwargs
)
A preprocessing layer which hashes and bins categorical features.
This layer transforms categorical inputs to hashed output. It element-wise
converts a ints or strings to ints in a fixed range. The stable hash
function uses tensorflow::ops::Fingerprint
to produce the same output
consistently across all platforms.
This layer uses FarmHash64 by default, which provides a consistent hashed output across different platforms and is stable across invocations, regardless of device and context, by mixing the input bits thoroughly.
If you want to obfuscate the hashed output, you can also pass a random
salt
argument in the constructor. In that case, the layer will use the
SipHash64 hash function, with
the salt
value serving as additional input to the hash function.
For an overview and full list of preprocessing layers, see the preprocessing guide.
Example (FarmHash64)
>>> layer = tf.keras.layers.Hashing(num_bins=3)
>>> inp = [['A'], ['B'], ['C'], ['D'], ['E']]
>>> layer(inp)
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[1],
[0],
[1],
[1],
[2]])>
Example (FarmHash64) with a mask value
>>> layer = tf.keras.layers.Hashing(num_bins=3, mask_value='')
>>> inp = [['A'], ['B'], [''], ['C'], ['D']]
>>> layer(inp)
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[1],
[1],
[0],
[2],
[2]])>
Example (SipHash64)
>>> layer = tf.keras.layers.Hashing(num_bins=3, salt=[133, 137])
>>> inp = [['A'], ['B'], ['C'], ['D'], ['E']]
>>> layer(inp)
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[1],
[2],
[1],
[0],
[2]])>
Example (Siphash64 with a single integer, same as salt=[133, 133]
)
>>> layer = tf.keras.layers.Hashing(num_bins=3, salt=133)
>>> inp = [['A'], ['B'], ['C'], ['D'], ['E']]
>>> layer(inp)
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[0],
[0],
[2],
[1],
[0]])>
Arguments
mask_value
bin, so the effective number of bins is (num_bins - 1)
if mask_value
is set.None
means no mask term will be added and the
hashing will start at index 0. Defaults to None
.None
, uses the FarmHash64 hash function.
It also supports tuple/list of 2 unsigned integer numbers, see
reference paper for details. Defaults to None
."int"
, "one_hot"
, "multi_hot"
, or
"count"
configuring the layer as follows:"int"
: Return the integer bin indices directly."one_hot"
: Encodes each individual element in the input into an
array the same size as num_bins
, containing a 1 at the input's bin
index. If the last dimension is size 1, will encode on that
dimension. If the last dimension is not size 1, will append a new
dimension for the encoded output."multi_hot"
: Encodes each sample in the input into a single array
the same size as num_bins
, containing a 1 for each bin index
index present in the sample. Treats the last dimension as the sample
dimension, if input shape is (..., sample_length)
, output shape
will be (..., num_tokens)
."count"
: As "multi_hot"
, but the int array contains a count of
the number of times the bin index appeared in the sample.
Defaults to "int"
."one_hot"
, "multi_hot"
,
and "count"
output modes. If True, returns a SparseTensor
instead of
a dense Tensor
. Defaults to False
.Input shape
A single or list of string, int32 or int64 Tensor
,
SparseTensor
or RaggedTensor
of shape (batch_size, ...,)
Output shape
An int64 Tensor
, SparseTensor
or RaggedTensor
of shape
(batch_size, ...)
. If any input is RaggedTensor
then output is
RaggedTensor
, otherwise if any input is SparseTensor
then output is
SparseTensor
, otherwise the output is Tensor
.
Reference