Keras 2 API documentation / Layers API / Normalization layers / UnitNormalization layer

UnitNormalization layer

[source]

UnitNormalization class

tf_keras.layers.UnitNormalization(axis=-1, **kwargs)

Unit normalization layer.

Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in axis).

Example

>>> data = tf.constant(np.arange(6).reshape(2, 3), dtype=tf.float32)
>>> normalized_data = tf.keras.layers.UnitNormalization()(data)
>>> print(tf.reduce_sum(normalized_data[0, :] ** 2).numpy())
1.0

Arguments

  • axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. -1 is the last dimension in the input. Defaults to -1.