RandomNormal
classtf_keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
Initializer that generates tensors with a normal distribution.
Also available via the shortcut function
tf.keras.initializers.random_normal
.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.)
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
RandomUniform
classtf_keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)
Initializer that generates tensors with a uniform distribution.
Also available via the shortcut function
tf.keras.initializers.random_uniform
.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.)
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
TruncatedNormal
classtf_keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)
Initializer that generates a truncated normal distribution.
Also available via the shortcut function
tf.keras.initializers.truncated_normal
.
The values generated are similar to values from a
tf.keras.initializers.RandomNormal
initializer except that values more
than two standard deviations from the mean are
discarded and re-drawn.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.)
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
Zeros
classtf_keras.initializers.Zeros()
Initializer that generates tensors initialized to 0.
Also available via the shortcut function tf.keras.initializers.zeros
.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.Zeros()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.Zeros()
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Ones
classtf_keras.initializers.Ones()
Initializer that generates tensors initialized to 1.
Also available via the shortcut function tf.keras.initializers.ones
.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.Ones()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.Ones()
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
GlorotNormal
classtf_keras.initializers.GlorotNormal(seed=None)
The Glorot normal initializer, also called Xavier normal initializer.
Also available via the shortcut function
tf.keras.initializers.glorot_normal
.
Draws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(2 / (fan_in + fan_out))
where fan_in
is the number of
input units in the weight tensor and fan_out
is the number of output units
in the weight tensor.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.GlorotNormal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.GlorotNormal()
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
References
GlorotUniform
classtf_keras.initializers.GlorotUniform(seed=None)
The Glorot uniform initializer, also called Xavier uniform initializer.
Also available via the shortcut function
tf.keras.initializers.glorot_uniform
.
Draws samples from a uniform distribution within [-limit, limit]
, where
limit = sqrt(6 / (fan_in + fan_out))
(fan_in
is the number of input
units in the weight tensor and fan_out
is the number of output units).
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.GlorotUniform()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.GlorotUniform()
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
References
HeNormal
classtf_keras.initializers.HeNormal(seed=None)
He normal initializer.
Also available via the shortcut function
tf.keras.initializers.he_normal
.
It draws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(2 / fan_in)
where fan_in
is the number of input units in
the weight tensor.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.HeNormal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.HeNormal()
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
References
HeUniform
classtf_keras.initializers.HeUniform(seed=None)
He uniform variance scaling initializer.
Also available via the shortcut function
tf.keras.initializers.he_uniform
.
Draws samples from a uniform distribution within [-limit, limit]
, where
limit = sqrt(6 / fan_in)
(fan_in
is the number of input units in the
weight tensor).
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.HeUniform()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.HeUniform()
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
References
Identity
classtf_keras.initializers.Identity(gain=1.0)
Initializer that generates the identity matrix.
Also available via the shortcut function tf.keras.initializers.identity
.
Only usable for generating 2D matrices.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.Identity()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.Identity()
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
Orthogonal
classtf_keras.initializers.Orthogonal(gain=1.0, seed=None)
Initializer that generates an orthogonal matrix.
Also available via the shortcut function tf.keras.initializers.orthogonal
.
If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns.
If the shape of the tensor to initialize is more than two-dimensional,
a matrix of shape (shape[0] * ... * shape[n - 2], shape[n - 1])
is initialized, where n
is the length of the shape vector.
The matrix is subsequently reshaped to give a tensor of the desired shape.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.Orthogonal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.Orthogonal()
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
References
Constant
classtf_keras.initializers.Constant(value=0)
Initializer that generates tensors with constant values.
Also available via the shortcut function tf.keras.initializers.constant
.
Only scalar values are allowed. The constant value provided must be convertible to the dtype requested when calling the initializer.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.Constant(3.)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.Constant(3.)
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
VarianceScaling
classtf_keras.initializers.VarianceScaling(
scale=1.0, mode="fan_in", distribution="truncated_normal", seed=None
)
Initializer that adapts its scale to the shape of its input tensors.
Also available via the shortcut function
tf.keras.initializers.variance_scaling
.
With distribution="truncated_normal" or "untruncated_normal"
, samples are
drawn from a truncated/untruncated normal distribution with a mean of zero
and a standard deviation (after truncation, if used) stddev = sqrt(scale /
n)
, where n
is:
mode="fan_in"
mode="fan_out"
mode="fan_avg"
With distribution="uniform"
, samples are drawn from a uniform distribution
within [-limit, limit]
, where limit = sqrt(3 * scale / n)
.
Examples
>>> # Standalone usage:
>>> initializer = tf.keras.initializers.VarianceScaling(
... scale=0.1, mode='fan_in', distribution='uniform')
>>> values = initializer(shape=(2, 2))
>>> # Usage in a TF-Keras layer:
>>> initializer = tf.keras.initializers.VarianceScaling(
... scale=0.1, mode='fan_in', distribution='uniform')
>>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
"fan_in"
, "fan_out"
, "fan_avg"
."truncated_normal"
,
"untruncated_normal"
, or "uniform"
.