Keras 2 API documentation / Layers API / Core layers / Activation layer

Activation layer

[source]

Activation class

tf_keras.layers.Activation(activation, **kwargs)

Applies an activation function to an output.

Arguments

  • activation: Activation function, such as tf.nn.relu, or string name of built-in activation function, such as "relu".

Usage:

>>> layer = tf.keras.layers.Activation('relu')
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[0.0, 0.0, 0.0, 2.0]
>>> layer = tf.keras.layers.Activation(tf.nn.relu)
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[0.0, 0.0, 0.0, 2.0]

Input shape

Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include the batch axis) when using this layer as the first layer in a model.

Output shape

Same shape as input.