SeparableConv1D
classtf_keras.layers.SeparableConv1D(
filters,
kernel_size,
strides=1,
padding="valid",
data_format=None,
dilation_rate=1,
depth_multiplier=1,
activation=None,
use_bias=True,
depthwise_initializer="glorot_uniform",
pointwise_initializer="glorot_uniform",
bias_initializer="zeros",
depthwise_regularizer=None,
pointwise_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
depthwise_constraint=None,
pointwise_constraint=None,
bias_constraint=None,
**kwargs
)
Depthwise separable 1D convolution.
This layer performs a depthwise convolution that acts separately on
channels, followed by a pointwise convolution that mixes channels.
If use_bias
is True and a bias initializer is provided,
it adds a bias vector to the output.
It then optionally applies an activation function to produce the final
output.
Arguments
stride
value != 1 is incompatible with specifying
any dilation_rate
value != 1."valid"
, "same"
, or "causal"
(case-insensitive).
"valid"
means no padding. "same"
results in padding with zeros
evenly to the left/right or up/down of the input such that output has
the same height/width dimension as the input. "causal"
results in
causal (dilated) convolutions, e.g. output[t]
does not depend on
input[t+1:]
.channels_last
(default) or
channels_first
. The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape
(batch_size, length, channels)
while channels_first
corresponds to
inputs with shape (batch_size, channels, length)
.num_filters_in * depth_multiplier
.keras.activations
).keras.initializers
). If None, then the default initializer
('glorot_uniform') will be used.keras.initializers
). If None, then the default initializer
('glorot_uniform') will be used.keras.initializers
).keras.regularizers
).keras.regularizers
).keras.regularizers
).keras.regularizers
).Optimizer
(e.g. used for
norm constraints or value constraints for layer weights). The function
must take as input the unprojected variable and must return the
projected variable (which must have the same shape). Constraints are
not safe to use when doing asynchronous distributed training
(see keras.constraints
).Optimizer
(see keras.constraints
).Optimizer
(see keras.constraints
).True
the weights of this layer will be marked as
trainable (and listed in layer.trainable_weights
).Input shape
3D tensor with shape:
(batch_size, channels, steps)
if data_format='channels_first'
or 3D tensor with shape:
(batch_size, steps, channels)
if data_format='channels_last'.
Output shape
3D tensor with shape:
(batch_size, filters, new_steps)
if data_format='channels_first'
or 3D tensor with shape:
(batch_size, new_steps, filters)
if data_format='channels_last'.
new_steps
value might have changed due to padding or strides.
Returns
A tensor of rank 3 representing
activation(separableconv1d(inputs, kernel) + bias)
.