Conv3D
classtf_keras.layers.Conv3D(
filters,
kernel_size,
strides=(1, 1, 1),
padding="valid",
data_format=None,
dilation_rate=(1, 1, 1),
groups=1,
activation=None,
use_bias=True,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs
)
3D convolution layer (e.g. spatial convolution over volumes).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If use_bias
is True,
a bias vector is created and added to the outputs. Finally, if
activation
is not None
, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers or None
, does not include the sample axis),
e.g. input_shape=(128, 128, 128, 1)
for 128x128x128 volumes
with a single channel,
in data_format="channels_last"
.
Examples
>>> # The inputs are 28x28x28 volumes with a single channel, and the
>>> # batch size is 4
>>> input_shape =(4, 28, 28, 28, 1)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv3D(
... 2, 3, activation='relu', input_shape=input_shape[1:])(x)
>>> print(y.shape)
(4, 26, 26, 26, 2)
>>> # With extended batch shape [4, 7], e.g. a batch of 4 videos of
>>> # 3D frames, with 7 frames per video.
>>> input_shape = (4, 7, 28, 28, 28, 1)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv3D(
... 2, 3, activation='relu', input_shape=input_shape[2:])(x)
>>> print(y.shape)
(4, 7, 26, 26, 26, 2)
Arguments
dilation_rate
value !=
1."valid"
or "same"
(case-insensitive).
"valid"
means no padding. "same"
results in padding with zeros
evenly to the left/right or up/down of the input such that output has
the same height/width dimension as the input.channels_last
(default) or
channels_first
. The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape batch_shape +
(spatial_dim1, spatial_dim2, spatial_dim3, channels)
while
channels_first
corresponds to inputs with shape batch_shape +
(channels, spatial_dim1, spatial_dim2, spatial_dim3)
. When unspecified,
uses image_data_format
value found in your TF-Keras config file at
~/.keras/keras.json
(if exists) else 'channels_last'. Note that the
channels_first
format is currently not supported by TensorFlow on CPU.
Defaults to 'channels_last'.dilation_rate
value != 1 is incompatible with specifying any
stride value != 1.filters / groups
filters. The output is the
concatenation of all the groups
results along the channel axis. Input
channels and filters
must both be divisible by groups
.keras.activations
).kernel
weights matrix (see
keras.initializers
). Defaults to 'glorot_uniform'.keras.initializers
). Defaults to 'zeros'.kernel
weights
matrix (see keras.regularizers
).keras.regularizers
).keras.regularizers
).keras.constraints
).keras.constraints
).Input shape
5+D tensor with shape: batch_shape + (channels, conv_dim1, conv_dim2,
conv_dim3)
if data_format='channels_first'
or 5+D tensor with shape: batch_shape + (conv_dim1, conv_dim2, conv_dim3,
channels)
if data_format='channels_last'.
Output shape
5+D tensor with shape: batch_shape + (filters, new_conv_dim1,
new_conv_dim2, new_conv_dim3)
if data_format='channels_first'
or 5+D tensor with shape: batch_shape + (new_conv_dim1, new_conv_dim2,
new_conv_dim3, filters)
if data_format='channels_last'.
new_conv_dim1
, new_conv_dim2
and new_conv_dim3
values might have
changed due to padding.
Returns
A tensor of rank 5+ representing
activation(conv3d(inputs, kernel) + bias)
.
Raises
padding
is "causal".strides > 1
and dilation_rate > 1
.