Keras 2 API documentation / Layers API / The base Layer class

The base Layer class

[source]

Layer class

tf_keras.layers.Layer(trainable=True, name=None, dtype=None, dynamic=False, **kwargs)

This is the class from which all layers inherit.

A layer is a callable object that takes as input one or more tensors and that outputs one or more tensors. It involves computation, defined in the call() method, and a state (weight variables). State can be created in various places, at the convenience of the subclass implementer:

  • in __init__();
  • in the optional build() method, which is invoked by the first __call__() to the layer, and supplies the shape(s) of the input(s), which may not have been known at initialization time;
  • in the first invocation of call(), with some caveats discussed below.

Layers are recursively composable: If you assign a Layer instance as an attribute of another Layer, the outer layer will start tracking the weights created by the inner layer. Nested layers should be instantiated in the __init__() method.

Users will just instantiate a layer and then treat it as a callable.

Arguments

  • trainable: Boolean, whether the layer's variables should be trainable.
  • name: String name of the layer.
  • dtype: The dtype of the layer's computations and weights. Can also be a tf.keras.mixed_precision.Policy, which allows the computation and weight dtype to differ. Default of None means to use tf.keras.mixed_precision.global_policy(), which is a float32 policy unless set to different value.
  • dynamic: Set this to True if your layer should only be run eagerly, and should not be used to generate a static computation graph. This would be the case for a Tree-RNN or a recursive network, for example, or generally for any layer that manipulates tensors using Python control flow. If False, we assume that the layer can safely be used to generate a static computation graph.

Attributes

  • name: The name of the layer (string).
  • dtype: The dtype of the layer's weights.
  • variable_dtype: Alias of dtype.
  • compute_dtype: The dtype of the layer's computations. Layers automatically cast inputs to this dtype which causes the computations and output to also be in this dtype. When mixed precision is used with a tf.keras.mixed_precision.Policy, this will be different than variable_dtype.
  • dtype_policy: The layer's dtype policy. See the tf.keras.mixed_precision.Policy documentation for details.
  • trainable_weights: List of variables to be included in backprop.
  • non_trainable_weights: List of variables that should not be included in backprop.
  • weights: The concatenation of the lists trainable_weights and non_trainable_weights (in this order).
  • trainable: Whether the layer should be trained (boolean), i.e. whether its potentially-trainable weights should be returned as part of layer.trainable_weights.
  • input_spec: Optional (list of) InputSpec object(s) specifying the constraints on inputs that can be accepted by the layer.

We recommend that descendants of Layer implement the following methods:

  • __init__(): Defines custom layer attributes, and creates layer weights that do not depend on input shapes, using add_weight(), or other state.
  • build(self, input_shape): This method can be used to create weights that depend on the shape(s) of the input(s), using add_weight(), or other state. __call__() will automatically build the layer (if it has not been built yet) by calling build().
  • call(self, inputs, *args, **kwargs): Called in __call__ after making sure build() has been called. call() performs the logic of applying the layer to the inputs. The first invocation may additionally create state that could not be conveniently created in build(); see its docstring for details. Two reserved keyword arguments you can optionally use in call() are: - training (boolean, whether the call is in inference mode or training mode). See more details in the layer/model subclassing guide - mask (boolean tensor encoding masked timesteps in the input, used in RNN layers). See more details in the layer/model subclassing guide A typical signature for this method is call(self, inputs), and user could optionally add training and mask if the layer need them. *args and **kwargs is only useful for future extension when more input parameters are planned to be added.
  • get_config(self): Returns a dictionary containing the configuration used to initialize this layer. If the keys differ from the arguments in __init__, then override from_config(self) as well. This method is used when saving the layer or a model that contains this layer.

Examples

Here's a basic example: a layer with two variables, w and b, that returns y = w . x + b. It shows how to implement build() and call(). Variables set as attributes of a layer are tracked as weights of the layers (in layer.weights).

class SimpleDense(Layer):

  def __init__(self, units=32):
      super(SimpleDense, self).__init__()
      self.units = units

  def build(self, input_shape):  # Create the state of the layer (weights)
    w_init = tf.random_normal_initializer()
    self.w = tf.Variable(
        initial_value=w_init(shape=(input_shape[-1], self.units),
                             dtype='float32'),
        trainable=True)
    b_init = tf.zeros_initializer()
    self.b = tf.Variable(
        initial_value=b_init(shape=(self.units,), dtype='float32'),
        trainable=True)

  def call(self, inputs):  # Defines the computation from inputs to outputs
      return tf.matmul(inputs, self.w) + self.b

# Instantiates the layer.
linear_layer = SimpleDense(4)

# This will also call `build(input_shape)` and create the weights.
y = linear_layer(tf.ones((2, 2)))
assert len(linear_layer.weights) == 2

# These weights are trainable, so they're listed in `trainable_weights`:
assert len(linear_layer.trainable_weights) == 2

Note that the method add_weight() offers a shortcut to create weights:

class SimpleDense(Layer):

  def __init__(self, units=32):
      super(SimpleDense, self).__init__()
      self.units = units

  def build(self, input_shape):
      self.w = self.add_weight(shape=(input_shape[-1], self.units),
                               initializer='random_normal',
                               trainable=True)
      self.b = self.add_weight(shape=(self.units,),
                               initializer='random_normal',
                               trainable=True)

  def call(self, inputs):
      return tf.matmul(inputs, self.w) + self.b

Besides trainable weights, updated via backpropagation during training, layers can also have non-trainable weights. These weights are meant to be updated manually during call(). Here's a example layer that computes the running sum of its inputs:

class ComputeSum(Layer):

  def __init__(self, input_dim):
      super(ComputeSum, self).__init__()
      # Create a non-trainable weight.
      self.total = tf.Variable(initial_value=tf.zeros((input_dim,)),
                               trainable=False)

  def call(self, inputs):
      self.total.assign_add(tf.reduce_sum(inputs, axis=0))
      return self.total

my_sum = ComputeSum(2)
x = tf.ones((2, 2))

y = my_sum(x)
print(y.numpy())  # [2. 2.]

y = my_sum(x)
print(y.numpy())  # [4. 4.]

assert my_sum.weights == [my_sum.total]
assert my_sum.non_trainable_weights == [my_sum.total]
assert my_sum.trainable_weights == []

For more information about creating layers, see the guide Making new Layers and Models via subclassing


weights property

tf_keras.layers.Layer.weights

Returns the list of all layer variables/weights.

Returns

A list of variables.


trainable_weights property

tf_keras.layers.Layer.trainable_weights

List of all trainable weights tracked by this layer.

Trainable weights are updated via gradient descent during training.

Returns

A list of trainable variables.


non_trainable_weights property

tf_keras.layers.Layer.non_trainable_weights

List of all non-trainable weights tracked by this layer.

Non-trainable weights are not updated during training. They are expected to be updated manually in call().

Returns

A list of non-trainable variables.


[source]

add_weight method

Layer.add_weight(
    name=None,
    shape=None,
    dtype=None,
    initializer=None,
    regularizer=None,
    trainable=None,
    constraint=None,
    use_resource=None,
    synchronization=tf.VariableSynchronization.AUTO,
    aggregation=tf.VariableSynchronization.NONE,
    **kwargs
)

Adds a new variable to the layer.

Arguments

  • name: Variable name.
  • shape: Variable shape. Defaults to scalar if unspecified.
  • dtype: The type of the variable. Defaults to self.dtype.
  • initializer: Initializer instance (callable).
  • regularizer: Regularizer instance (callable).
  • trainable: Boolean, whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean and variance). Note that trainable cannot be True if synchronization is set to ON_READ.
  • constraint: Constraint instance (callable).
  • use_resource: Whether to use a ResourceVariable or not. See this guide for more information.
  • synchronization: Indicates when a distributed a variable will be aggregated. Accepted values are constants defined in the class tf.VariableSynchronization. By default the synchronization is set to AUTO and the current DistributionStrategy chooses when to synchronize. If synchronization is set to ON_READ, trainable must not be set to True.
  • aggregation: Indicates how a distributed variable will be aggregated. Accepted values are constants defined in the class tf.VariableAggregation.
  • **kwargs: Additional keyword arguments. Accepted values are getter, collections, autocast, experimental_autocast and caching_device.

Returns

The variable created.

Raises

  • ValueError: When giving unsupported dtype and no initializer or when trainable has been set to True with synchronization set as ON_READ.

trainable property

tf_keras.layers.Layer.trainable

[source]

get_weights method

Layer.get_weights()

Returns the current weights of the layer, as NumPy arrays.

The weights of a layer represent the state of the layer. This function returns both trainable and non-trainable weight values associated with this layer as a list of NumPy arrays, which can in turn be used to load state into similarly parameterized layers.

For example, a Dense layer returns a list of two values: the kernel matrix and the bias vector. These can be used to set the weights of another Dense layer:

>>> layer_a = tf.keras.layers.Dense(1,
...   kernel_initializer=tf.constant_initializer(1.))
>>> a_out = layer_a(tf.convert_to_tensor([[1., 2., 3.]]))
>>> layer_a.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]
>>> layer_b = tf.keras.layers.Dense(1,
...   kernel_initializer=tf.constant_initializer(2.))
>>> b_out = layer_b(tf.convert_to_tensor([[10., 20., 30.]]))
>>> layer_b.get_weights()
[array([[2.],
       [2.],
       [2.]], dtype=float32), array([0.], dtype=float32)]
>>> layer_b.set_weights(layer_a.get_weights())
>>> layer_b.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]

Returns

Weights values as a list of NumPy arrays.


[source]

set_weights method

Layer.set_weights(weights)

Sets the weights of the layer, from NumPy arrays.

The weights of a layer represent the state of the layer. This function sets the weight values from numpy arrays. The weight values should be passed in the order they are created by the layer. Note that the layer's weights must be instantiated before calling this function, by calling the layer.

For example, a Dense layer returns a list of two values: the kernel matrix and the bias vector. These can be used to set the weights of another Dense layer:

>>> layer_a = tf.keras.layers.Dense(1,
...   kernel_initializer=tf.constant_initializer(1.))
>>> a_out = layer_a(tf.convert_to_tensor([[1., 2., 3.]]))
>>> layer_a.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]
>>> layer_b = tf.keras.layers.Dense(1,
...   kernel_initializer=tf.constant_initializer(2.))
>>> b_out = layer_b(tf.convert_to_tensor([[10., 20., 30.]]))
>>> layer_b.get_weights()
[array([[2.],
       [2.],
       [2.]], dtype=float32), array([0.], dtype=float32)]
>>> layer_b.set_weights(layer_a.get_weights())
>>> layer_b.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]

Arguments

  • weights: a list of NumPy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of get_weights).

Raises

  • ValueError: If the provided weights list does not match the layer's specifications.

[source]

get_config method

Model.get_config()

Returns the config of the Model.

Config is a Python dictionary (serializable) containing the configuration of an object, which in this case is a Model. This allows the Model to be be reinstantiated later (without its trained weights) from this configuration.

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Developers of subclassed Model are advised to override this method, and continue to update the dict from super(MyModel, self).get_config() to provide the proper configuration of this Model. The default config will return config dict for init parameters if they are basic types. Raises NotImplementedError when in cases where a custom get_config() implementation is required for the subclassed model.

Returns

Python dictionary containing the configuration of this Model.


[source]

add_loss method

Layer.add_loss(losses, **kwargs)

Add loss tensor(s), potentially dependent on layer inputs.

Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs a and b, some entries in layer.losses may be dependent on a and some on b. This method automatically keeps track of dependencies.

This method can be used inside a subclassed layer or model's call function, in which case losses should be a Tensor or list of Tensors.

Example

class MyLayer(tf.keras.layers.Layer):
  def call(self, inputs):
    self.add_loss(tf.abs(tf.reduce_mean(inputs)))
    return inputs

The same code works in distributed training: the input to add_loss() is treated like a regularization loss and averaged across replicas by the training loop (both built-in Model.fit() and compliant custom training loops).

The add_loss method can also be called directly on a Functional Model during construction. In this case, any loss Tensors passed to this Model must be symbolic and be able to be traced back to the model's Inputs. These losses become part of the model's topology and are tracked in get_config.

Example

inputs = tf.keras.Input(shape=(10,))
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
# Activity regularization.
model.add_loss(tf.abs(tf.reduce_mean(x)))

If this is not the case for your loss (if, for example, your loss references a Variable of one of the model's layers), you can wrap your loss in a zero-argument lambda. These losses are not tracked as part of the model's topology since they can't be serialized.

Example

inputs = tf.keras.Input(shape=(10,))
d = tf.keras.layers.Dense(10)
x = d(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
# Weight regularization.
model.add_loss(lambda: tf.reduce_mean(d.kernel))

Arguments

  • losses: Loss tensor, or list/tuple of tensors. Rather than tensors, losses may also be zero-argument callables which create a loss tensor.
  • **kwargs: Used for backwards compatibility only.

losses property

tf_keras.layers.Layer.losses

List of losses added using the add_loss() API.

Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing losses under a tf.GradientTape will propagate gradients back to the corresponding variables.

Examples

>>> class MyLayer(tf.keras.layers.Layer):
...   def call(self, inputs):
...     self.add_loss(tf.abs(tf.reduce_mean(inputs)))
...     return inputs
>>> l = MyLayer()
>>> l(np.ones((10, 1)))
>>> l.losses
[1.0]
>>> inputs = tf.keras.Input(shape=(10,))
>>> x = tf.keras.layers.Dense(10)(inputs)
>>> outputs = tf.keras.layers.Dense(1)(x)
>>> model = tf.keras.Model(inputs, outputs)
>>> # Activity regularization.
>>> len(model.losses)
0
>>> model.add_loss(tf.abs(tf.reduce_mean(x)))
>>> len(model.losses)
1
>>> inputs = tf.keras.Input(shape=(10,))
>>> d = tf.keras.layers.Dense(10, kernel_initializer='ones')
>>> x = d(inputs)
>>> outputs = tf.keras.layers.Dense(1)(x)
>>> model = tf.keras.Model(inputs, outputs)
>>> # Weight regularization.
>>> model.add_loss(lambda: tf.reduce_mean(d.kernel))
>>> model.losses
[<tf.Tensor: shape=(), dtype=float32, numpy=1.0>]

Returns

A list of tensors.